1,307 research outputs found

    New Intervals for the Difference Between Two Independent Binomial Proportions

    Get PDF
    In this paper we gave an Edgeworth expansion for the studentized difference of two binomial proportions. We then proposed two new intervals by correcting the skewness in the Edgeworth expansion in a direct and an indirect way. Such the bias-correct confidence intervals are easy to compute, and their coverage probabilities converge to the nominal level at a rate of O(n-½), where n is the size of the combined samples. Our simulation results suggest tat in finite samples the new interval based on the indirect method have the similar performance to the two best existing intervals in terms of coverage accuracy and average interval length and that another new interval based on the direct method had the best average coverage accuracy but could have poor coverage when two true binomial proportions are close to the boundary points

    MicroRNAs, an active and versatile group in cancers

    Get PDF
    microRNAs (miRNAs) are a class of non-coding RNAs that function as endogenous triggers of the RNA interference pathway. Studies have shown that thousands of human protein-coding genes are regulated by miRNAs, indicating that miRNAs are master regulators of many important biological processes, such as cancer development. miRNAs frequently have deregulated expression in many types of human cancers, and play critical roles in tumorigenesis, which functions either as tumor suppressors or as oncogenes. Recent studies have shown that miRNAs are highly related with cancer progression, including initiating, growth, apoptosis, invasion, and metastasis. Furthermore, miRNAs are shown to be responsible for the cancer-related inflammation, anti-cancer drug resistance, and regulation of cancer stem cells. Therefore, miRNAs have generated great interest as a novel strategy in cancer diagnosis and therapy. Here we review the versatile roles of miRNAs in cancers and their potential applications for diagnosis, prognosis, and treatment as biomarkers

    7H-Chromeno[3,2-h]quinolin-7-one methanol monosolvate

    Get PDF
    The four-ring system in the title compound, C16H9NO2·CH3OH, is planar (r.m.s deviation = 0.03 Å); the methanol solvent mol­ecule forms a hydrogen bond to the quinoline N atom

    Effects of nebulized ketamine on allergen-induced airway hyperresponsiveness and inflammation in actively sensitized Brown-Norway rats

    Get PDF
    Since airway hyperresponsiveness (AHR) and allergic inflammatory changes are regarded as the primary manifestations of asthma, the main goals of asthma treatment are to decrease inflammation and maximize bronchodilation. These goals can be achieved with aerosol therapy. Intravenous administration of the anesthetic, ketamine, has been shown to trigger bronchial smooth muscle relaxation. Furthermore, increasing evidence suggests that the anti-inflammatory properties of ketamine may protect against lung injury. However, ketamine inhalation might yield the same or better results at higher airway and lower ketamine plasma concentrations for the treatment of asthma. Here, we studied the effect of ketamine inhalation on bronchial hyperresponsiveness and airway inflammation in a Brown-Norway rat model of ovalbumin(OVA)-induced allergic asthma. Animals were actively sensitized by subcutaneous injection of OVA and challenged by repeated intermittent (thrice weekly) exposure to aerosolized OVA for two weeks. Before challenge, the sensitizened rats received inhalation of aerosol of phosphate-buffered saline (PBS) or aerosol of ketamine or injection of ketamine respectivity. Airway reactivity to acetylcholine (Ach) was measured in vivo, and various inflammatory markers, including Th2 cytokines in bronchoalveolar lavage fluid (BALF), as well as induciable nitric oxide synthase (iNOS) and nitric oxide (NO) in lungs were examined. Our results revealed that delivery of aerosolized ketamine using an ultrasonic nebulizer markedly suppressed allergen-mediated airway hyperreactivity, airway inflammation and airway inflammatory cell infiltration into the BALF, and significantly decreased the levels of interleukin-4 (IL-4) in the BALF and expression of iNOS and the concentration of NO in the inflamed airways from OVA-treated rats. These findings collectively indicate that nebulized ketamine attenuated many of the central components of inflammatory changes and AHR in OVA-provoked experimental asthma, potentially providing a new therapeutic approach against asthma

    The diagnostic value of electrocardiogram-based machine learning in long QT syndrome: a systematic review and meta-analysis

    Get PDF
    IntroductionTo perform a meta-analysis to discover the performance of ML algorithms in identifying Congenital long QT syndrome (LQTS).MethodsThe searched databases included Cochrane, EMBASE, Web of Science, and PubMed. Our study considered all English-language studies that reported the detection of LQTS using ML algorithms. Quality was assessed using QUADAS-2 and QUADAS-AI tools. The bivariate mixed effects models were used in our study. Based on genotype data for LQTS, we performed a subgroup analysis.ResultsOut of 536 studies, 8 met all inclusion criteria. The pooled area under the receiving operating curve (SAUROC) for detecting LQTS was 0.95 (95% CI: 0.31–1.00); sensitivity was 0.87 (95% CI: 0.83–0.90), and specificity was 0.91 (95% CI: 0.88–0.93). Additionally, diagnostic odd ratio (DOR) was 65 (95% CI: 39–109). The positive likelihood ratio (PLR) was 9.3 (95% CI: 7.0–12.3) and the negative likelihood ratio (NLR) was 0.14 (95% CI: 0.11–0.20), with very low heterogeneity (I2 = 16%).DiscussionWe found that machine learning can be used to detect features of rare cardiovascular disease like LQTS, thus increasing our understanding of intelligent interpretation of ECG. To improve ML performance in the classification of LQTS subtypes, further research is required.Systematic Review Registrationidentifier PROSPERO CRD42022360122

    Effect of Corilagin on the Proliferation and NF- κ

    Get PDF
    Background. This study is to explore the effect of corilagin on the proliferation and NF-κB signaling pathway in U251 glioblastoma cells and U251 glioblastoma stem-like cells. Methods. CD133 positive U251 glioblastoma cells were separated by immunomagnetic beads to isolate glioblastoma stem-like cells. U251 cells and stem-like cells were intervened by different corilagin concentrations (0, 25, 50, and 100 μg/mL) for 48 h, respectively. Cell morphology, cell counting kit-8 assay, flow cytometry, dual luciferase reporter assay, and a western blot were used to detect and analyze the cell proliferation and cell cycle and investigate the expression of IKBα protein in cytoplasm and NF-κB/p65 in nucleus. Results. Corilagin inhibited the cell proliferation of U251 cells and their stem-like cells and the inhibition role was stronger in U251 stem-like cells (P<0.05). The cell cycle was arrested at G2/M phase in the U251 cells following corilagin intervention; the proportion of cells in G2/M phase increased as the concentration of corilagin increased (P<0.05). The U251 stem-like cells were arrested at the S phase following treatment with corilagin; the proportion of cells in the S phase increased as the concentration of corilagin increased (P<0.05). The ratio of dual luciferase activities of U251 stem-like cells was lower than that of U251 cells in the same corilagin concentration. With increasing concentrations of corilagin, the IKBα expression in cytoplasm of U251 cells and U251 stem-like cells was increased, but the p65 expression in nucleus of U251 cells and U251 stem-like cells was decreased (P<0.05). Conclusion. Corilagin can inhibit the proliferation of glioblastoma cells and glioblastoma stem-like cells; the inhibition on glioblastoma stem-like cell proliferation is stronger than glioblastoma cells. This different result indicates that the effect of corilagin on U251 cells and U251 stem-like cells may have close relationships with mechanism of cell cycle and NF-κB signaling pathway; however, the real antitumor mechanism of corilagin is not yet clear and requires further study

    Anti-tumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma

    Get PDF
    BACKGROUND: Hepatocellular carcinoma is difficult to diagnose early, and most patients are already in the late stages of the disease when they are admitted to hospital. The total 5-year survival rate is less than 5%. Recent studies have showed that brucine has a good anti-tumor effect, but high toxicity, poor water solubility, short half-life, narrow therapeutic window, and a toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study evaluated the effects of brucine immuno-nanoparticles (BIN) on hepatocellular carcinoma. MATERIALS AND METHODS: Anionic polymerization, chemical modification technology, and phacoemulsification technology were used to prepare a carboxylated polyethylene glycol-polylactic acid copolymer carrier material. Chemical coupling technology was utilized to develop antihuman AFP McAb-polyethylene glycol-polylactic acid copolymer BIN. The size, shape, zeta potential, drug loading, encapsulation efficiency, and release of these immune-nanoparticles were studied in vitro. The targeting, and growth, invasion, and metastasis inhibitory effects of this treatment on liver cancer SMMC-7721 cells were tested. RESULTS: BIN were of uniform size with an average particle size of 249 ± 77 nm and zeta potential of -18.7 ± 4.19 mV. The encapsulation efficiency was 76.0% ± 2.3% and the drug load was 5.6% ± 0.2%. Complete uptake and even distribution around the liver cancer cell membrane were observed. CONCLUSION: BIN had even size distribution, was stable, and had a slow-releasing effect. BIN targeted the cell membrane of the liver cancer cell SMMC-7721 and significantly inhibited the growth, adhesion, invasion, and metastasis of SMMC-7721 cells. As a novel drug carrier system, BIN are a potentially promising targeting treatment for liver cancer
    corecore