19,146 research outputs found

    Prey capture and meat-eating by the wild colobus monkey _Rhinopithecus bieti_ in Yunnan, China

    Get PDF
    If it is true that extant primates evolved from an insectivorous ancestor, then primate entomophagy would be a primitive trait. Many taxa, however, have undergone a dietary shift from entomophagy to phytophagy, evolving a specialised gut and dentition and becoming exclusive herbivores. The exclusively herbivorous taxa are the Malagasy families Indriidae and Lepilemuridae, and the Old World Monkey subfamily Colobinae, and among these meat-eating has not been observed except as an anomaly, with the sole exception of the Hanuman langur (_Semnopithecus entellus_), which feeds on insects seasonally, and a single observation of a nestling bird predated by wild Sichuan snub-nosed monkeys (_Rhinopithecus roxellana_). Here, we describe the regular capture of warm-blooded animals and the eating of meat by a colobine, the critically endangered Yunnan snub-nosed monkey (_Rhinopithecus bieti_). This monkey engages in scavenge hunting as a male-biased activity that may, in fact, be related to group structure and spatial spread. In this context, meat-eating can be regarded as an energy/nutrient maximization feeding strategy rather than as a consequence of any special characteristic of meat itself. The finding of meat-eating in forest-dwelling primates might provide new insights into the evolution of dietary habits in early humans

    Electron self-energy and effective mass in a single heterostructure

    Full text link
    In this paper, we investigate the electron self-energy and effective mass in a single heterostructure using Green-function method. Numerical calculations of the electron self-energy and effective mass for GaAs/AlAs heterostructure are performed. The results show that the self energy (effective mass) of electron, which incorporate the energy of electron coupling to interface-optical phonons and half three-dimension LO phonons, monotonically increase(decrease) from that of interface polaron to that of 3D bulk polaron with the increase of the distance between the position of the electron and interface.Comment: 10 pages, 2 figure

    Comparator Design in Sensors for Environmental Monitoring

    Get PDF
    This paper presents circuit design considerations of comparator in analog-to-digital converters (ADC) applied for a portable, low-cost and high performance nano-sensor chip which can be applied to detect the airborne magnetite pollution nano particulate matter (PM) for environmental monitoring. High-resolution ADC plays a vital important role in high perfor-mance nano-sensor, while high-resolution comparator is a key component in ADC. In this work, some important design issues related to comparators in analog-to-digital converters (ADCs) are discussed, simulation results show that the resolution of the comparator proposed can achieve 5µV , and it is appropriate for high-resolution application

    Throughput Maximization for UAV-Aided Backscatter Communication Networks

    Get PDF
    This paper investigates unmanned aerial vehicle (UAV)-aided backscatter communication (BackCom) networks, where the UAV is leveraged to help the backscatter device (BD) forward signals to the receiver. Based on the presence or absence of a direct link between BD and receiver, two protocols, namely transmit-backscatter (TB) protocol and transmit-backscatter-relay (TBR) protocol, are proposed to utilize the UAV to assist the BD. In particular, we formulate the system throughput maximization problems for the two protocols by jointly optimizing the time allocation, reflection coefficient and UAV trajectory. Different static/dynamic circuit power consumption models for the two protocols are analyzed. The resulting optimization problems are shown to be non-convex, which are challenging to solve. We first consider the dynamic circuit power consumption model, and decompose the original problems into three sub-problems, namely time allocation optimization with fixed UAV trajectory and reflection coefficient, reflection coefficient optimization with fixed UAV trajectory and time allocation, and UAV trajectory optimization with fixed reflection coefficient and time allocation. Then, an efficient iterative algorithm is proposed for both protocols by leveraging the block coordinate descent method and successive convex approximation (SCA) techniques. In addition, for the static circuit power consumption model, we obtain the optimal time allocation with a given reflection coefficient and UAV trajectory and the optimal reflection coefficient with low computational complexity by using the Lagrangian dual method. Simulation results show that the proposed protocols are able to achieve significant throughput gains over the compared benchmarks
    corecore