2,706 research outputs found

    Summary of Research on Wind Power Participation in Frequency Modulation of Power System

    Get PDF
    Nowadays, with the increase of wind power input rate, its ratio in the power generation system is also rising, and the stability of the system is also affected. How to make good use of wind power to participate in system frequency adjustment has become a major and difficult issue in research

    Synthesis and characterization of SrBi4Ti4O15 ferroelectric filler based composite polymer electrolytes for lithium ion batteries

    Get PDF
    Composite polymer electrolytes (CPEs) based on poly (ethylene oxide) (PEO) (Mol.Wt similar to 6 x 10(5)) complexed with LiN(CF3SO2)(2) lithium salt and SrBi4Ti4O15 ferroelectric ceramic filler have been prepared as films. Citrate gel technique and conventional solid state technique were employed for the synthesis of the ferroelectric fillers in order to study the effect of particle size of the filler on ionic conductivity of the polymer electrolyte. Characterization techniques such as X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and temperature dependant DC conductivity studies were taken for the prepared polymer composite electrolytes. The broadening of DTA endotherms on addition of ceramic fillers to the polymer salt complex indicated the reduction in crystallinity. An enhancement in conductivity was observed with the addition of SrBi4Ti4O15 as filler to the (PEO)(8)-LiN(CF3SO2)(2) polymer salt complexes. Among the investigated samples (PEO)(8)-LiN(CF3SO2)(2) +10 wt% SrBi4Ti4O15 (citrate gel) polymer composite exhibits a maximum conductivity

    Si-based anode materials for lithium rechargeable batteries

    Get PDF
    Silicon is a very promising candidate to replace graphite as the anode in Li-ion batteries because of its very high theoretical capacity, relatively low cost and low toxicity. However, it has not yet made its way into commercial cells. This review highlights recent progress on Si-based anode materials for lithium rechargeable batteries

    NiCo2O4/C Nanocomposite as a highly reversible anode material for lithium-ion batteries

    Get PDF
    A NiCo2O4/C nanocomposite has been synthesized by a hydrothermal method followed by a calcination. X-ray powder diffraction and transmission electron microscopy measurements demonstrated the composite was composed of crystalline NiCo2O4 and amorphous carbon, and NiCo2O4 and carbon particles amalgamated together with good affinity. The electrochemical results showed as high as 914.5 mAh/g reversible capacity could be achieved at 40 mA/g current density in the potential range of 0.01-3.0 V. The initial coulombic efficiency of the composite was 79.2%, and the capacity retention was 78.3% up to 50 cycles. The superior electrochemical performance indicated that the NiCo2O4/C nanocomposite might be a promising alternative to conventional graphite-based anode materials for lithium-ion batteries
    • …
    corecore