649 research outputs found

    Spinal release of tumour necrosis factor activates c-Jun N-terminal kinase and mediates inflammation-induced hypersensitivity.

    Get PDF
    BackgroundMounting evidence points to individual contributions of tumour necrosis factor-alpha (TNF) and the c-Jun N-terminal kinase (JNK) pathway to the induction and maintenance of various pain states. Here we explore the role of spinal TNF and JNK in carrageenan-induced hypersensitivity. As links between TNF and JNK have been demonstrated in vitro, we investigated if TNF regulates spinal JNK activity in vivo.MethodsTNF levels in lumbar cerebrospinal fluid (CSF) were measured by enzyme-linked immunosorbent assay, spinal TNF gene expression by real-time polymerase chain reaction and TNF protein expression, JNK and c-Jun phosphorylation by western blotting. The role of spinal TNF and JNK in inflammation-induced mechanical and thermal hypersensitivity was assessed by injecting the TNF inhibitor etanercept and the JNK inhibitors SP600125 and JIP-1 intrathecally (i.t.). TNF-mediated regulation of JNK activity was examined by assessing the effect of i.t. etanercept on inflammation-induced spinal JNK activity.ResultsTNF levels were increased in CSF and spinal cord following carrageenan-induced inflammation. While JNK phosphorylation followed the same temporal pattern as TNF, c-jun was only activated at later time points. Intrathecal injection of TNF and JNK inhibitors attenuated carrageenan-induced mechanical and thermal hypersensitivity. TNF stimulation induced JNK phosphorylation in cultured spinal astrocytes and blocking the spinal actions of TNF in vivo by i.t. injection of etanercept reduced inflammation-induced spinal JNK activity.ConclusionsHere we show that spinal JNK activity is dependent on TNF and that both TNF and the JNK signalling pathways modulate pain-like behaviour induced by peripheral inflammation

    Neonatal local noxious insult affects gene expression in the spinal dorsal horn of adult rats

    Get PDF
    Neonatal noxious insult produces a long-term effect on pain processing in adults. Rats subjected to carrageenan (CAR) injection in one hindpaw within the sensitive period develop bilateral hypoalgesia as adults. In the same rats, inflammation of the hindpaw, which was the site of the neonatal injury, induces a localized enhanced hyperalgesia limited to this paw. To gain an insight into the long-term molecular changes involved in the above-described long-term nociceptive effects of neonatal noxious insult at the spinal level, we performed DNA microarray analysis (using microarrays containing oligo-probes for 205 genes encoding receptors and transporters for glutamate, GABA, and amine neurotransmitters, precursors and receptors for neuropeptides, and neurotrophins, cytokines and their receptors) to compare gene expression profiles in the lumbar spinal dorsal horn (LDH) of adult (P60) male rats that received neonatal CAR treatment within (at postnatal day 3; P3) and outside (at postnatal 12; P12) of the sensitive period. The data were obtained both without inflammation (at baseline) and during complete Freund's adjuvant induced inflammation of the neonatally injured paw. The observed changes were verified by real-time RT-PCR. This study revealed significant basal and inflammation-associated aberrations in the expression of multiple genes in the LDH of adult animals receiving CAR injection at P3 as compared to their expression levels in the LDH of animals receiving either no injections or CAR injection at P12. In particular, at baseline, twelve genes (representing GABA, serotonin, adenosine, neuropeptide Y, cholecystokinin, opioid, tachykinin and interleukin systems) were up-regulated in the bilateral LDH of the former animals. The baseline condition in these animals was also characterized by up-regulation of seven genes (encoding members of GABA, cholecystokinin, histamine, serotonin, and neurotensin systems) in the LDH ipsilateral to the neonatally-injured paw. The largest aberration in gene expression, however, was observed during inflammation of the neonatally injured hindpaws in the ipsilateral LDH, which included thirty-six genes (encoding numerous members of glutamate, serotonin, GABA, calcitonin gene-related peptide, neurotrophin, and interleukin systems). These findings suggest that changes in gene expression may be involved in the long-term nociceptive effects of neonatal noxious insult at the spinal level

    Superderivations for Modular Graded Lie Superalgebras of Cartan-type

    Full text link
    Superderivations for the eight families of finite or infinite dimensional graded Lie superalgebras of Cartan-type over a field of characteristic p>3p>3 are completely determined by a uniform approach: The infinite dimensional case is reduced to the finite dimensional case and the latter is further reduced to the restrictedness case, which proves to be far more manageable. In particular, the outer superderivation algebras of those Lie superalgebras are completely determined

    Altered Brain Functional and Effective Connectivity Induced by Electroacupuncture in Rats Following Anterior Cruciate Ligament Transection

    Get PDF
    Hao-Yu Lu,1,2,* Jia-Jia Wu,1,* Jun Shen,3,4,* Xiang-Xin Xing,1 Xu-Yun Hua,5 Mou-Xiong Zheng,5 Lian-Bo Xiao,3,4 Jian-Guang Xu1,2,6 1Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 2School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 3Department of Orthopedic, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 4Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 5Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 6Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, People’s Republic of China*These authors contributed equally to this workCorrespondence: Jian-Guang Xu, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China, No. 1200 Cailun Road, Shanghai, People’s Republic of China, Tel +86 021-51322091, Fax +86 021-51322042, Email [email protected] Lian-Bo Xiao, Department of Orthopedic, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China, No. 540 Xinhua Road, Shanghai, People’s Republic of China, Tel/Fax +86 021-62805833, Email [email protected]: The chronic pain arising from knee osteoarthritis (KOA) is a prevalent clinical manifestation. As a traditional Chinese approach, electroacupuncture (EA) has a positive influence in relieving chronic pain from KOA. The study aims to explore functional connectivity (FC) and effective connectivity (EC) alterations induced by EA in anterior cruciate ligament transection (ACLT) rat model of KOA using resting-state functional magnetic resonance imaging (fMRI).Methods: After the establishment of ACLT, rats were randomly divided into the EA group and the sham-EA group. The EA group received EA intervention while the sham-EA group received sham-intervention for 3 weeks. Mechanical pain threshold (MPT) assessment was performed before and after intervention, and fMRI was conducted after intervention.Results: EA intervention effectively relieved pain in post-ACLT rats. Results of rest-state functional connectivity (rs-FC) analysis revealed that compared with the sham-EA group, the EA group had higher FC between the right raphe and the left auditory cortex, the left caudate_ putamen and the left internal capsule (IC), as well as the right zona incerta (ZI) and the left piriform cortex, but lower FC between the right raphe and the left hippocampus ventral, as well as the right septum and the left septum. Furthermore, Granger causality analysis (GCA) found the altered EC between the right septum and the left septum, as well as the left IC and the right septum.Conclusion: The results confirmed the effect of EA on analgesia in post- ACLT rats. The alterations of FC and EC, mainly involving basal ganglia and limbic system neural connections, might be one of the neural mechanisms underlying the effect of EA, providing novel information about connectomics plasticity of EA following ACLT.Keywords: knee osteoarthritis, anterior cruciate ligament transection, chronic pain, electroacupuncture, functional connectivity, effective connectivit

    Non-invasive airway health assessment: Synchrotron imaging reveals effects of rehydrating treatments on mucociliary transit in-vivo

    Get PDF
    To determine the efficacy of potential cystic fibrosis (CF) therapies we have developed a novel mucociliary transit (MCT) measurement that uses synchrotron phase contrast X-ray imaging (PCXI) to non-invasively measure the transit rate of individual micron-sized particles deposited into the airways of live mice. The aim of this study was to image changes in MCT produced by a rehydrating treatment based on hypertonic saline (HS), a current CF clinical treatment. Live mice received HS containing a long acting epithelial sodium channel blocker (P308); isotonic saline; or no treatment, using a nebuliser integrated within a small-animal ventilator circuit. Marker particle motion was tracked for 20 minutes using PCXI. There were statistically significant increases in MCT in the isotonic and HS-P308 groups. The ability to quantify in vivo changes in MCT may have utility in pre-clinical research studies designed to bring new genetic and pharmaceutical treatments for respiratory diseases into clinical trials.Martin Donnelley, Kaye S. Morgan, Karen K. W. Siu, Nigel R. Farrow, Charlene S. Stahr, Richard C. Boucher, Andreas Fouras & David W. Parson

    Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.

    Get PDF
    BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice

    Effects of Exogenous Galanin on Neuropathic Pain State and Change of Galanin and Its Receptors in DRG and SDH after Sciatic Nerve-Pinch Injury in Rat

    Get PDF
    A large number of neuroanatomical, neurophysiologic, and neurochemical mechanisms are thought to contribute to the development and maintenance of neuropathic pain. However, mechanisms responsible for neuropathic pain have not been completely delineated. It has been demonstrated that neuropeptide galanin (Gal) is upregulated after injury in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) where it plays a predominantly antinociceptive role. In the present study, sciatic nerve-pinch injury rat model was used to determine the effects of exogenous Gal on the expression of the Gal and its receptors (GalR1, GalR2) in DRG and SDH, the alterations of pain behavior, nerve conduction velocity (NCV) and morphology of sciatic nerve. The results showed that exogenous Gal had antinociceptive effects in this nerve-pinch injury induced neuropathic pain animal model. It is very interesting that Gal, GalR1 and GalR2 change their expression greatly in DRG and SDH after nerve injury and intrathecal injection of exougenous Gal. Morphological investigation displays a serious damage after nerve-pinch injury and an amendatory regeneration after exogenous Gal treatment. These findings imply that Gal, via activation of GalR1 and/or GalR2, may have neuroprotective effects in reducing neuropathic pain behaviors and improving nerve regeneration after nerve injury

    Overexpression of Cathepsin Z Contributes to Tumor Metastasis by Inducing Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma

    Get PDF
    The aim of this study was to characterize the oncogenic function and mechanism of Cathepsin Z (CTSZ) at 20q13.3, a frequently amplified region in hepatocellular carcinoma (HCC). Real-time PCR were used to compare CTSZ expression between paired HCC tumor and non-tumor specimens. CTSZ gene was stably transfected into HCC line QGY-7703 cells and its role in tumorigenicity and cell motility was characterized by soft agar, wound-healing, transwell invasion and cell adhesion assay, and tumor xenograft mouse model. Western blot analysis was used to study expression of proteins associated with epithelial-mesenchymal transition (EMT)

    Hyperglycemic Myocardial Damage Is Mediated by Proinflammatory Cytokine: Macrophage Migration Inhibitory Factor

    Get PDF
    Diabetes has been regarded as an inflammatory condition which is associated with left ventricular diastolic dysfunction (LVDD). The purpose of this study was to examine the expression levels of macrophage migration inhibitory factor (MIF) and G protein-coupled receptor kinase 2 (GRK2) in patients with early diabetic cardiomyopathy, and to investigate the mechanisms involved in MIF expression and GRK2 activation.83 patients in the age range of 30-64 years with type 2 diabetes and 30 matched healthy men were recruited. Left ventricular diastolic function was evaluated by cardiac Doppler echocardiography. Plasma MIF levels were determined by ELISA. To confirm the clinical observation, we also studied MIF expression in prediabetic rats with impaired glucose tolerance (IGT) and relationship between MIF and GRK2 expression in H9C2 cardiomyoblasts exposed to high glucose.Compared with healthy subjects, patients with diabetes have significantly increased levels of plasma MIF which was further increased in diabetic patients with Left ventricular diastolic dysfunction (LVDD). The increased plasma MIF levels in diabetic patients correlated with plasma glucose, glycosylated hemoglobin and urine albumin levels. We observed a significant number of TUNEL-positive cells in the myocardium of IGT-rats but not in the control rats. Moreover, we found higher MIF expression in the heart of IGT with cardiac dysfunction compared to that of the controls. In H9C2 cardiomyoblast cells, MIF and GRK2 expression was significantly increased in a glucose concentration-dependant manner. Furthermore, GRK2 expression was abolished by siRNA knockdown of MIF and by the inhibition of CXCR4 in H9C2 cells.Our findings indicate that hyperglycemia is a causal factor for increased levels of pro-inflammatory cytokine MIF which plays a role in the development of cardiomyopathy occurring in patients with type 2 diabetes. The elevated levels of MIF are associated with cardiac dysfunction in diabetic patients, and the MIF effects are mediated by GRK2
    corecore