2,707 research outputs found

    Smoking cessation and risk of esophageal cancer by histological type : systematic review and meta-analysis

    Get PDF
    Background Tobacco smoking strongly increases risk of esophageal squamous cell carcinoma and moderately increases risk of esophageal adenocarcinoma. How smoking cessation influences esophageal cancer risk across histological subtypes, time latencies, and geographic regions is not clear. Methods Studies were systematically searched on Medline, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov. Pooled estimates of risk ratios (RRs) were derived using a random effects model. Cochran’s Q test and I2 statistic were used to detect heterogeneity. Results Among 15 009 studies, 52 fulfilled the inclusion criteria. Using nonsmokers as a reference, risk of esophageal squamous cell carcinoma was lower among former smokers (RR = 2.05, 95% confidence interval [CI] = 1.71 to 2.45) than among current smokers (RR = 4.18, 95% CI = 3.42 to 5.12). Compared with current smokers, a strong risk reduction was evident after five or more years (RR = 0.59, 95% CI = 0.47 to 0.75), and became stronger after 10 or more years (RR = 0.42, 95% CI = 0.34 to 0.51) and 20 or more years (RR = 0.34, 95% CI = 0.25 to 0.47) following smoking cessation. The risk reduction was strong in Western populations, while weak in Asian populations. Using nonsmokers as reference, the risk of esophageal adenocarcinoma was only slightly lower among former smokers (RR = 1.66, 95% CI = 1.48 to 1.85) than among current smokers (RR = 2.34, 95% CI = 2.04 to 2.69). The risk of esophageal adenocarcinoma did not show any clear reduction over time after smoking cessation, with a risk ratio of 0.72 (95% CI = 0.52 to 1.01) 20 or more years after smoking cessation, compared with current smokers. Conclusions Smoking cessation time-dependently decreases risk of esophageal squamous cell carcinoma, particularly in Western populations, while it has limited influence on the risk of esophageal adenocarcinoma.Swedish Cancer SocietySwedish Research CouncilAccepte

    Current Reversals in a inhomogeneous system with asymmetric unbiased fluctuations

    Full text link
    We present a study of transport of a Brownian particle moving in periodic symmetric potential in the presence of asymmetric unbiased fluctuations. The particle is considered to move in a medium with periodic space dependent friction. By tuning the parameters of the system, the direction of current exhibit reversals, both as a function of temperature as well as the amplitude of rocking force. We found that the mutual interplay between the opposite driving factors is the necessary term for current reversals.Comment: 9 pages, 7 figure

    Sno/scaRNAbase: a curated database for small nucleolar RNAs and cajal body-specific RNAs

    Get PDF
    Small nucleolar RNAs (snoRNAs) and Cajal body-specific RNAs (scaRNAs) are named for their subcellular localization within nucleoli and Cajal bodies (conserved subnuclear organelles present in the nucleoplasm), respectively. They have been found to play important roles in rRNA, tRNA, snRNAs, and even mRNA modification and processing. All snoRNAs fall in two categories, box C/D snoRNAs and box H/ACA snoRNAs, according to their distinct sequence and secondary structure features. Box C/D snoRNAs and box H/ACA snoRNAs mainly function in guiding 2′-O-ribose methylation and pseudouridilation, respectively. ScaRNAs possess both box C/D snoRNA and box H/ACA snoRNA sequence motif features, but guide snRNA modifications that are transcribed by RNA polymerase II. Here we present a Web-based sno/scaRNA database, called sno/scaRNAbase, to facilitate the sno/scaRNA research in terms of providing a more comprehensive knowledge base. Covering 1979 records derived from 85 organisms for the first time, sno/scaRNAbase is not only dedicated to filling gaps between existing organism-specific sno/scaRNA databases that are focused on different sno/scaRNA aspects, but also provides sno/scaRNA scientists with an opportunity to adopt a unified nomenclature for sno/scaRNAs. Derived from a systematic literature curation and annotation effort, the sno/scaRNAbase provides an easy-to-use gateway to important sno/scaRNA features such as sequence motifs, possible functions, homologues, secondary structures, genomics organization, sno/scaRNA gene's chromosome location, and more. Approximate searches, in addition to accurate and straightforward searches, make the database search more flexible. A BLAST search engine is implemented to enable blast of query sequences against all sno/scaRNAbase sequences. Thus our sno/scaRNAbase serves as a more uniform and friendly platform for sno/scaRNA research. The database is free available at

    An experimental investigation on the mechanical properties of the interface between large-sized graphene and a flexible substrate

    Get PDF
    In this paper, the interfacial mechanical properties of large-sized monolayer graphene attached to a flexible polyethylene terephthalate (PET) substrate are investigated. Using a micro-tensile test and Raman spectroscopy, in situ measurements are taken to obtain the full-field deformation of graphene subjected to a uniaxial tensile loading and unloading cycle. The results of the full-field deformation are subsequently used to identify the status of the interface between the graphene and the substrate as one of perfect adhesion, one showing slide or partial debonding, and one that is fully debonded. The interfacial stress/strain transfer and the evolution of the interface from one status to another during the loading and unloading processes are discussed and the mechanical parameters, such as interfacial strength and interfacial shear strength, are obtained quantitatively demonstrating a relatively weak interface between large-sized graphene and PET

    Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load

    Get PDF
    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C

    Elucidating the surface geometric design of hydrophobic Australian Eucalyptus leaves: experimental and modeling studies

    Get PDF
    Three Australian native Eucalyptus species, i.e., Eucalyptus woodwardii, Eucalyptus pachyphylla and Eucalyptus dolorosa, were investigated, for the first time, with respect to the hydrophobicity of their leaves. It is well established that these leaves exhibit exceptionally high water repellency, in addition to an extraordinary ability to retain water, albeit their specific wetting mechanisms are still poorly understood. To identify the critical factors underlying this phenomenon, the surface topography of these leaves was subjected to micro-examination (SEM). Micro- and nanometer scale surface roughness was revealed, resembling that of the quintessential “lotus effect”. Surface free energy analysis was performed on two models based on the surface topographies of the study Eucalyptus species and lotus, in order to study wetting transitions on these specific microscopic surface features. The influence of surface geometrical parameters, such as edge-to-edge distance, base radius and cylindrical height, on surface free energy with different liquid penetration depths was studied with these two models. Larger energy barriers and smaller liquid-solid contact areas were more influential in the calculations for the lotus than for Eucalyptus. The information obtained from these two models may be useful for guiding the design of novel artificial surfaces in the collection and transport of micro-volume liquids. © 2019 The Author
    • …
    corecore