721 research outputs found

    Progress of photonuclear cross sections for medical radioisotope production at the SLEGS energy domain

    Full text link
    Photonuclear reactions using a laser Compton scattering (LCS) gamma source provide a new method for producing radioisotopes for medical applications. Compared with the conventional method, this method has the advantages of a high specific activity and less heat. Initiated by the Shanghai Laser Electron Gamma Source (SLEGS), we conducted a survey of potential photonuclear reactions, (\upgamma,n), (\upgamma,p), and (\upgamma,\upgamma') whose cross-sections can be measured at SLEGS by summarizing the experimental progress. In general, the data are rare and occasionally inconsistent. Therefore, theoretical calculations are often used to evaluate the production of medical radioisotopes. Subsequently, we verified the model uncertainties of the widely used reaction code TALYS-1.96, using the experimental data of the \ce{^100Mo}(\upgamma,n)\ce{^99Mo}, \ce{^65Cu}(\upgamma,n)\ce{^64Cu}, and \ce{^68Zn}(\upgamma,p)\ce{^67Cu} reactions.Comment: 16 pages, 19 figure

    2,5-Dibromo­terephthalic acid dihydrate

    Get PDF
    The asymmetric unit of the title compound, C8H4Br2O4·2H2O, contains one half-mol­ecule of 2,5-dibromo­terephthalic acid (DBTA) and one water mol­ecule. The DBTA mol­ecule is centrosymmetric. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional framework

    Large‐area integrated triboelectric sensor array for wireless static and dynamic pressure detection and mapping

    Get PDF
    Large-area flexible pressure sensors are of paramount importance for various future applications, such as electronic skin, human-machine interfacing, and health-monitoring devices. Here, we report a self-powered and large-area integrated triboelectric sensor array (ITSA) based on coupling a triboelectric sensor array (TSA) and an array chip of CD4066 through a traditional connection way. Enabled by a simple and cost-effective fabrication process, the size of the ITSA can be scaled up to 38 × 38 cm2. In addition, unlike the proposed triboelectric sensors array before which can only react to the dynamic interaction, this ITSA is able to detect static and dynamic pressure. Moreover, through integrating the ITSA with a signal processing circuit, a complete wireless sensing system is present. Diverse applications of the system are demonstrated in details, including detecting pressure, identifying position, tracking trajectory and recognizing the profile of external contact objects. Thus, the ITSA in this work opens a new route in the direction of large-area, self-powered, and wireless triboelectric sensing system
    corecore