8,285 research outputs found

    Smooth Solutions and Discrete Imaginary Mass of the Klein-Gordon Equation in the de Sitter Background

    Full text link
    Using methods in the theory of semisimple Lie algebras, we can obtain all smooth solutions of the Klein-Gordon equation on the 4-dimensional de Sitter spacetime (dS^4). The mass of a Klein-Gordon scalar on dS^4 is related to an eigenvalue of the Casimir operator of so(1,4). Thus it is discrete, or quantized. Furthermore, the mass m of a Klein-Gordon scalar on dS^4 is imaginary: m^2 being proportional to -N(N+3), with N >= 0 an integer.Comment: 23 pages, 4 figure

    Understanding for flavor physics in the lepton sector

    Full text link
    In this paper, we give a model for understanding flavor physics in the lepton sector--mass hierarchy among different generations and neutrino mixing pattern. The model is constructed in the framework of supersymmetry, with a family symmetry S4U(1)S4*U(1). There are two right-handed neutrinos introduced for seesaw mechanism, while some standard model(SM) gauge group singlet fields are included which transforms non-trivially under family symmetry. In the model, each order of contributions are suppressed by δ0.1\delta \sim 0.1 compared to the previous one. In order to reproduce the mass hierarchy, mτm_\tau and Δmatm2\sqrt{\Delta m_{atm}^2}, mμm_\mu and Δmsol2\sqrt{\Delta m_{sol}^2} are obtained at leading-order(LO) and next-to-leading-order(NLO) respectively, while electron can only get its mass through next-to-next-to-next-to-leading-order(NNNLO) contributions. For neutrino mixing angels, θ12,θ23,θ13\theta_{12}, \theta_{23}, \theta_{13} are 45,45,045^\circ, 45^\circ, 0 i.e. Bi-maximal mixing pattern as first approximation, while higher order contributions can make them consistent with experimental results. As corrections for θ12\theta_{12} and θ13\theta_{13} originate from the same contribution, there is a relation predicted for them sinθ13=1tanθ121+tanθ12\sin{\theta_{13}}=\displaystyle \frac{1-\tan{\theta_{12}}}{1+\tan{\theta_{12}}}. Besides, deviation from π4\displaystyle \frac{\pi}{4} for θ23\theta_{23} should have been as large as deviation from 0 for θ13\theta_{13} if it were not the former is suppressed by a factor 4 compared to the latter.Comment: version to appear in Phys. Rev.

    On the four-zero texture of quark mass matrices and its stability

    Get PDF
    We carry out a new study of quark mass matrices MuM^{}_{\rm u} (up-type) and MdM^{}_{\rm d} (down-type) which are Hermitian and have four zero entries, and find a new part of the parameter space which was missed in the previous works. We identify two more specific four-zero patterns of MuM^{}_{\rm u} and MdM^{}_{\rm d} with fewer free parameters, and present two toy flavor-symmetry models which can help realize such special and interesting quark flavor structures. We also show that the texture zeros of MuM^{}_{\rm u} and MdM^{}_{\rm d} are essentially stable against the evolution of energy scales in an analytical way by using the one-loop renormalization-group equations.Comment: 33 pages, 4 figures, minor comments added, version to appear in Nucl. Phys.

    Localization of U(1)U(1) gauge vector field on flat branes with five-dimension (asymptotic) AdS5_{5} spacetime

    Full text link
    In order to localize U(1)U(1) gauge vector field on Randall-Sundrum-like braneworld model with infinite extra dimension, we propose a new kind of non-minimal coupling between the U(1)U(1) gauge field and the gravity. We propose three kinds of coupling methods and they all support the localization of zero mode. In addition, one of them can support the localization of massive modes. Moreover, the massive tachyonic modes can be excluded. And our method can be used not only in the thin braneword models but also in the thick ones.Comment: Added acknowledgments to the refree. Appeared on JHE
    corecore