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Abstract

We carry out a new study of quark mass matrices Mu (up-type) and Md (down-type) which are Hermitian 
and have four zero entries, and find a new part of the parameter space which was missed in the previous 
works. We identify two more specific four-zero patterns of Mu and Md with fewer free parameters, and 
present two toy flavor-symmetry models which can help realize such special and interesting quark flavor 
structures. We also show that the texture zeros of Mu and Md are essentially stable against the evolution of 
energy scales in an analytical way by using the one-loop renormalization-group equations.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of the Higgs boson [1] signifies the “completion” of the Standard Model 
(SM) which is not only phenomenologically successful but also theoretically self-consistent. 
In particular, it verifies the Brout–Englert–Higgs mechanism and Yukawa interactions which are 
responsible for the generation of lepton and quark masses. However, the SM is not really “com-
plete” in the sense that it cannot explain the origin of neutrino masses, the structures of lepton 
and quark flavors, the asymmetry of matter and antimatter in the Universe, the nature of dark 
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matter, etc. Hence one has to go beyond the SM and explore possible new physics behind it in 
order to solve the aforementioned puzzles.

Here let us focus on the flavor puzzles in the SM. The flavor issues mainly refer to the gen-
eration of fermion masses, the dynamics of flavor mixing and the origin of CP violation. Even 
within the SM in which all the neutrinos are assumed to be massless, there are thirteen free flavor 
parameters which have to be experimentally determined. On the other hand, one is also puzzled 
by the observed spectra of lepton and quark masses and the observed patterns of flavor mixing, 
which must imply a kind of underlying flavor structure [2].

In this paper we restrict ourselves to the flavor issues in the quark sector where there are ten 
free parameters: six quark masses, three flavor mixing angles and one CP-violating phase. Thanks 
to the coexistence of Yukawa interactions and charged-current gauge interactions, the flavor and 
mass bases of three quark families do not coincide with each other, leading to the phenomenon of 
flavor mixing and CP violation. The latter is described by a 3 ×3 unitary matrix V , the so-called 
Cabibbo–Kobayashi–Maskawa (CKM) matrix [3],

V =
(

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

)
, (1)

which can be parameterized in terms of three mixing angles (θ12, θ13, θ23) and one CP-violating 
phase (δ) via the definitions of Vus = sin θ12 cos θ13, Vub = sin θ13e

−iδ and Vcb = cos θ13 sin θ23
and the unitarity of V itself. As V originates from a mismatch between the diagonalizations of the 
up-type quark mass matrix Mu and the down-type one Md, which are equivalent to transforming 
their flavor bases into their mass bases, an attempt to calculate the flavor mixing parameters 
should start from the mass matrices in the flavor basis. In view of the experimental results mu �
mc � mt , md � ms � mb and θ13 � θ23 � θ12 ≡ θC � 13◦, where θC denotes the Cabibbo 
angle, we believe that the strong hierarchy of three flavor mixing angles must be attributed to the 
strong hierarchy of quark masses.

Therefore, one is tempted to relate the smallness of three flavor mixing angles with the small-
ness of four independent mass ratios mu/mc , mc/mt , md/ms and ms/mb . A famous relation of 
this kind is the Gatto–Sartori–Tonin (GST) relation sinθ12 ∼ √

md/ms [4]. The Fritzsch ansatz 
of quark mass matrices [5],

MF
u =

( 0 Cu 0
C∗

u 0 Bu
0 B∗

u Au

)
, MF

d =
( 0 Cd 0

C∗
d 0 Bd

0 B∗
d Ad

)
, (2)

can easily lead us to the above GST relation. Note that MF
u and MF

d possess the parallel structures 
with the same zero entries. Furthermore, they have been taken to be Hermitian without loss of 
generality, since a rotation of the right-handed quark fields does not affect any physical results 
in the SM or its extensions which have no flavor-changing right-handed currents. The Fritzsch 
ansatz totally involves eight independent parameters, and thus it can predict two relations among 
six quark masses and four flavor mixing parameters. However, it has been shown that this simple 
ansatz is in conflict with current experimental data [6].

One may modify the Fritzsch ansatz by reducing the number of its texture zeros. Given a 
Hermitian or symmetric mass matrix, a pair of its off-diagonal texture zeros are always counted 
as one zero. Hence the Fritzsch ansatz has six nontrivial texture zeros. It has been shown that 
adding nonzero (1, 1) or (1, 3) entries to MF

u and MF
d does not help much [7], but the following 

Fritzsch-like ansatz is phenomenologically viable [8,9]:
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Mu =
( 0 Cu 0

C∗
u B̃u Bu

0 B∗
u Au

)
, Md =

( 0 Cd 0
C∗

d B̃d Bd
0 B∗

d Ad

)
. (3)

We see that Hermitian Mu and Md have the up–down parallelism and four texture zeros. So 
far a lot of interest has been paid to the phenomenological consequences of Eq. (3) [8–11]. In 
particular, the parameter space of this ansatz was numerically explored in Ref. [12], where a mild 
hierarchy |B|/A ∼ B̃/|B| ∼ 0.24 was found to be favored for both up and down sectors. Here 
we have omitted the subscript “u” and “d” for the relevant parameters, and we shall do so again 
when discussing something common to Mu and Md throughout this paper. Although there are 
four complex parameters in Eq. (3), only two linear combinations of the four phases are physical 
and can simply be denoted as φ1 = arg(Cu) − arg(Cd) and φ2 = arg(Bu) − arg(Bd). It has been 
found that φ2 is very close to zero or 2π [12], while sinφ1 is close to ±1 and its sign can be fixed 
by ηuηd sinφ1 > 0, where the dimensionless coefficients ηu and ηd will be defined in Section 2.

In this paper we aim to carry out a new study of the four-zero texture of quark mass matrices 
and improve the previous works in the following aspects:

• We reexplore the parameter space of Mu and Md by taking into account the updated values of 
quark masses and the latest results of the CKM flavor mixing parameters. The new analysis 
leads us to a new part of the parameter space, which is interesting but was missed in Ref. [12]
and other references.

• We identify two more specific four-zero patterns of Mu and Md with fewer free parameters. 
Namely, there is a kind of parameter correlation in such an ansatz, making the exercise of 
model building much easier. We present two toy flavor-symmetry models to realize such 
special and interesting quark flavor structures.

• The running behaviors of Mu and Md from a superhigh scale down to the electroweak scale 
are studied in an analytical way by using the one-loop renormalization-group equations 
(RGEs), in order to examine whether those texture zeros are stable against the evolution 
of energy scales. We find that they are essentially stable in the SM.

The remaining parts of this paper are organized as follows. In Section 2 we first explore the 
complete parameter space of Mu and Md and then discuss the relevant phenomenological con-
sequences. Particular attention will be paid to some properties of the four-zero texture that the 
previous works did not put emphasis on. Section 3 is devoted to discussions about the special pat-
terns of four-zero quark mass matrices in which some particular relations among the finite matrix 
elements are possible. Two toy flavor-symmetry models, which can help realize such interesting 
patterns, will be presented for the sake of illustration. In Section 4 we derive the one-loop RGE 
corrections to Mu and Md which evolve from a superhigh energy scale down to the electroweak 
scale. Our analytical results show that those texture zeros are essentially stable against the evo-
lution of energy scales. As a byproduct, the possibility of applying the four-zero texture of quark 
mass matrices to resolving the strong CP problem is also discussed in a brief way. Finally, we 
summarize our main results and make some concluding remarks on the quark flavor issues in 
Section 5.

2. The parameter space: results and explanations

Before performing an updated and complete numerical analysis of the parameter space of 
Hermitian Mu and Md with four texture zeros, let us briefly reformulate the relations between 
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the parameters of Mu,d and the observable quantities [12]. First of all, Mu,d can be transformed 
into a real symmetric matrix Mu,d through a phase redefinition:

M = P †MP =
( 0 |C| 0

|C| B̃ |B|
0 |B| A

)
, (4)

where the subscript “u” or “d” has been omitted, and P = Diag{1, e−iφC , e−i(φC+φB)} with φB =
arg(B) and φC = arg(C). Of course, one may diagonalize M as follows:

OTMO =
(

λ1
λ2

λ3

)
. (5)

Without loss of generality, we require A and λ3 to be positive. Then |B|, B̃ and |C| can be 
expressed in terms of A and the three quark mass eigenvalues λi (for i = 1, 2, 3, corresponding 
to mu, mc , mt in the up sector or md , ms , mb in the down sector):

B̃ = λ1 + λ2 + λ3 − A ,

|B| =
√

(A − λ1) (A − λ2) (λ3 − A)

A
,

|C| =
√−λ1λ2λ3

A
. (6)

In this case the orthogonal matrix O reads

O =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√ λ2λ3 (A − λ1)

A (λ2 − λ1) (λ3 − λ1)
η

√√√√ λ1λ3 (λ2 − A)

A(λ2 − λ1) (λ3 − λ2)

√√√√ λ1λ2 (A − λ3)

A (λ3 − λ1) (λ3 − λ2)

−η

√√√√ λ1 (λ1 − A)

(λ2 − λ1) (λ3 − λ1)

√√√√ λ2 (A − λ2)

(λ2 − λ1) (λ3 − λ2)

√√√√ λ3 (λ3 − A)

(λ3 − λ1) (λ3 − λ2)

η

√√√√ λ1 (A − λ2) (A − λ3)

A (λ2 − λ1) (λ3 − λ1)
−
√√√√ λ2 (A − λ1) (λ3 − A)

A(λ2 − λ1) (λ3 − λ2)

√√√√ λ3 (A − λ1) (A − λ2)

A (λ3 − λ1) (λ3 − λ2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

where η = ±1, and the emergence of this coefficient can be understood as follows. Since A and 
λ3 have been taken to be positive, λ1 and λ2 must have the opposite signs so as to assure a 
negative value of the determinant of M,

Det(M) = −A|C|2 = λ1λ2λ3 . (8)

When identifying λ1,2,3 with the physical quark masses, we use η = +1 and −1 to label the cases 
(λ1, λ2, λ3) = (−mu, mc, mt) and (λ1, λ2, λ3) = (mu, −mc, mt) in the up sector, respectively. 
The same labeling is valid for the down sector.

In terms of quark mass eigenstates, the weak charged-current interactions are written as

−Lcc = g2√
2
( u c t )L γ μ V

(
d

s

b

)
L

W+
μ + h.c. , (9)

where the CKM matrix V appears in the form V = OT
u P ∗

u PdOd. The nine elements of V can be 
explicitly expressed as
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Viα = Ou
1iO

d
1α + Ou

2iO
d
2αeiφ1 + Ou

3iO
d
3αei(φ1+φ2) , (10)

where φ1 = φCu − φCd and φ2 = φBu − φBd , and the subscripts i and α run over (u, c, t) and 
(d, s, b), respectively. Now it is clear that V depends on four free parameters Au, Ad, φ1 and 
φ2, after the quark masses are input. With the help of the above analytical results, we are able to 
constrain the parameter space of Mu and Md by taking account of the latest values of the CKM 
matrix elements [13]

|V | =
(0.97427 ± 0.00014 0.22536 ± 0.00061 0.00355 ± 0.00015

0.22522 ± 0.00061 0.97343 ± 0.00015 0.0414 ± 0.0012
0.00886 ± 0.00033 0.0405 ± 0.0012 0.99914 ± 0.00005

)
, (11)

together with the updated values of quark masses at the scale of MZ [14]

mu = 1.38+0.42
−0.41 MeV , mc = 638+43

−84 MeV , mt = 172.1 ± 1.2 GeV ,

md = 2.82 ± 0.48 MeV , ms = 57+18
−12 MeV , mb = 2860+160

−60 MeV . (12)

In our numerical analysis, we prefer to use |Vus |, |Vub|, |Vcb| and the CP-violating observable 
sin 2β as the inputs because their values have been determined to a very good degree of accuracy. 
Here β stands for one of the inner angles of the CKM unitarity triangle described by the orthog-
onality relation V ∗

ubVud + V ∗
cbVcd + V ∗

tbVtd = 0 in the complex plane. The three inner angles of 
this triangle are defined as

α = arg

(
− V ∗

tbVtd

V ∗
ubVud

)
, β = arg

(
−V ∗

cbVcd

V ∗
tbVtd

)
, γ = arg

(
−V ∗

ubVud

V ∗
cbVcd

)
, (13)

and their experimental values are [13]

α =
(

85.4+3.9
−3.8

)◦
, sin 2β = 0.682 ± 0.019 , γ =

(
68.0+8.0

−8.5

)◦
. (14)

Obviously, the uncertainty associated with sin2β is much smaller than those associated with α
and γ . The unitarity of V requires α + β + γ = π .

Fig. 1(a) shows the allowed region of Au and Ad, which are rescaled as ru = Au/mt and rd =
Ad/mb , in the (ηu, ηd) = (+1, +1) case. Since the results of ru and rd in the other three cases 
are not quite different from that illustrated in Fig. 1(a), here we just concentrate on the (ηu, ηd) =
(+1, +1) case for the sake of simplicity. Now that ru � rd is a quite good approximation as 
shown in Fig. 1(a), we simply use r to denote both ru and rd when their difference needs not to 
be mentioned. We find that the region of r can be roughly divided into two parts: (1) r is close 
to 1 and mainly lies in the range of 0.8 to 0.9; (2) r is around 0.5 and mainly ranges from 0.4
to 0.6. These two parts will be referred to as the r ∼ 1 and r ∼ 0.5 regions, respectively, in the 
following discussions. The reasonableness of this treatment will become clear shortly, since the 
phase parameters φ1 and φ2 behave very differently in these two regions.

The allowed regions of φ1 and φ2 are shown in Fig. 2, where the possibilities of (ηu, ηd) =
(+1, +1), (+1, −1), (−1, +1) and (−1, −1) have all been considered. Taking the (+1, +1) case 
for example, we find that φ2 is very close to 2π and thus its allowed range can also be denoted 
as φ2 � 0. In comparison, the allowed range of φ1 is much wider but it can also be divided 
into two parts in a reasonable approximation: φ1 ∼ 0.5π and φ1 ∼ 1.5π . There is actually a 
correlation between r and φ1: in the r ∼ 1 region φ1 ∼ 0.5π holds, and in the r ∼ 0.5 region 
φ1 ∼ 1.5π holds. After examining all the four (ηu, ηd) = (±1, ±1) cases, we obtain the more 
general correlation between r and φ1,2 as follows:



Z.-z. Xing, Z.-h. Zhao / Nuclear Physics B 897 (2015) 302–325 307
Fig. 1. The allowed regions of Au,d, |Bu,d|, B̃u,d and |Cu,d| as constrained by current experimental data in the (ηu, ηd) =
(+1, +1) case.

Fig. 2. The allowed regions of φ1 and φ2 as constrained by current experimental data in the (ηu, ηd) = (±1,±1) cases.
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Table 1
The correlation between r and φ1,2 in the four (ηu, ηd) = (±1, ±1) cases.

r ∼ 1 r ∼ 0.5

(ηu, ηd) = (+1,+1) φ1 ∼ 0.5π , cosφ1 < 0, φ2 � 0. φ1 ∼ 1.5π , cosφ1 < 0, φ2 � 0.
(ηu, ηd) = (+1,−1) φ1 ∼ 1.5π , cosφ1 > 0, φ2 � 0. φ1 ∼ 0.5π , cosφ1 > 0, φ2 � 0.
(ηu, ηd) = (−1,+1) φ1 ∼ 1.5π , cosφ1 > 0, φ2 � 0. φ1 ∼ 0.5π , cosφ1 > 0, φ2 � 0.
(ηu, ηd) = (−1,−1) φ1 ∼ 0.5π , cosφ1 < 0, φ2 � 0. φ1 ∼ 1.5π , cosφ1 < 0, φ2 � 0.

ηu ηd sinφ1 > 0 for r ∼ 1 ; ηu ηd sinφ1 < 0 for r ∼ 0.5 ;
ηd sinφ2 < 0 ; ηu ηd cosφ1 < 0 . (15)

Note that only the constraint ηd sinφ2 < 0 is numerically exact, and the other three constraints 
serve for good approximations in which most scattered points are satisfied. Such correlative 
constraints can also be given in a more explicit way, as listed in Table 1. Finally let us point out 
that the r ∼ 1 region and its corresponding parameter correlation found here are consistent with 
the results presented in Ref. [12], but the r ∼ 0.5 region and its parameter correlation are our 
new findings which were missed in the previous works (mainly because φ1 takes totally different 
values in this region from our expectation based on its values in the r ∼ 1 region).

All the correlative constraints listed in Table 1 can find an explanation once the analytical 
expression of the CKM matrix V is explicitly presented. No matter whether the region r ∼ 1 or 
r ∼ 0.5 is concerned, one can easily check that A is close to the mass of the third-family quark 
and thus it is much larger than the masses of the first- and second-family quarks. As a result, the 
orthogonal matrices Ou and Od can approximate to

Ou �

⎛
⎜⎜⎜⎜⎜⎝

1 ηu

√
mu

mc

0

−ηu

√
ru

mu

mc

√
ru

√
1 − ru

ηu

√
(1 − ru)

mu

mc

−√
1 − ru

√
ru

⎞
⎟⎟⎟⎟⎟⎠ ,

Od �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ηd

√
md

ms

√(
1

rd
− 1

)
md

mb

ms

mb

−ηd

√
rd

md

ms

√
rd

√
1 − rd

ηd

√
(1 − rd)

(
1 − ηd

rd

ms

mb

)
md

ms

−√
1 − rd

√
rd

(
1 − ηd

rd

ms

mb

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

Because mu/mc ∼ mc/mt ∼ sin4 θC and md/ms ∼ ms/mb ∼ sin2 θC hold, the (1, 3) entry of Ou
is negligibly small but that of Od is not. Although the factor ms/(rdmb) is actually much smaller 
than 1, it is kept in the (3, 1) and (3, 3) entries of Od since it will play a crucial role in explaining 
the correlation ηd sinφ2 < 0.

Given the approximate results of Ou and Od in Eq. (16), it is straightforward to calculate all 
the CKM matrix elements by using Eq. (10). We are particularly interested in

|Vus | �
∣∣∣∣ηu ηd

√
md −

√
mu

eiφ1
(√

ru rd +√(1 − ru) (1 − rd) eiφ2
)∣∣∣∣ ,
ms mc
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|Vcb| �
∣∣∣∣∣
√

ru (1 − rd) −
√

(1 − ru) rd

(
1 − ηd

rd

ms

mb

)
eiφ2

∣∣∣∣∣ ,

|Vub| �
∣∣∣∣∣
√

md

mb

ms

mb

(
1

rd
− 1

)
− ηu

√
mu

mc

Vcb

∣∣∣∣∣ . (17)

Among them |Vcb| deserves special attention and can be decomposed as follows:

|Vcb| =
∣∣Re (V ′

cb) − iIm (V ′
cb)
∣∣=√[Re(V ′

cb)
]2 + [Im(V ′

cb)
]2

,

Re(V ′
cb) �√ru (1 − rd) −

√
(1 − ru) rd

(
1 − ηd

rd

ms

mb

)
cosφ2 ,

Im(V ′
cb) �

√
(1 − ru) rd

(
1 − ηd

rd

ms

mb

)
sinφ2 , (18)

where V ′
cb = e−iφ1Vcb has been defined. Clearly, neither |Re (V ′

cb)| nor |Im (V ′
cb)| is allowed to 

be larger than the experimental result |Vcb| � 0.04. That is why ru is always nearly equal to rd
and φ2 is so close to 0 or 2π . For either ru ∼ rd ∼ 1 or ru ∼ rd ∼ 0.5, the fact of φ2 ∼ 0 (or 2π ) 
allows us to simplify the expression of |Vus| to

|Vus | �
∣∣∣∣ηu ηd

√
md

ms

−
√

mu

mc

eiφ1

∣∣∣∣=
√

md

ms

− 2 ηu ηd

√
mu

mc

md

ms

cosφ1 + mu

mc

. (19)

It is known that the term 
√

md/ms itself can fit the experimental value of |Vus| to a good degree of 
accuracy (i.e., the GST relation), and hence one has to control the contribution from the smaller 
term 

√
mu/mc by adjusting the CP-violating phase φ1. This observation immediately leads to 

cosφ1 ∼ 0, or equivalently φ1 ∼ 0.5π or 1.5π . As first pointed out in Ref. [15], the relation in 
Eq. (19) is essentially compatible with the orthogonality relation V ∗

ubVud + V ∗
cbVcd + V ∗

tbVtd =
0 after the latter is rescaled by V ∗

cb, leading to the striking prediction α � φ1 ∼ 0.5π for the 
corresponding CKM unitarity triangle. Needless to say, this prediction is consistent with current 
experimental data shown in Eq. (14).

In order to understand the correlation between the signs of sinφ1,2 and those of ηu,d, one 
needs to consider the impact of the CP-violating observable sin2β on the parameter space of Mu
and Md. Eqs. (10) and (16) allow us to obtain

Re(VcdV ∗
cb) � −ηu

√
mu

mc

sinφ1 Im(V ′
cb) +

[
ηu

√
mu

mc

cosφ1 − ηd

√
md

ms

]
Re(V ′

cb) ,

Im(VcdV ∗
cb) � −ηu

√
mu

mc

sinφ1 Re(V ′
cb) −

[
ηu

√
mu

mc

cosφ1 − ηd

√
md

ms

]
Im(V ′

cb) ,

Re(VtdV ∗
tb) � −ηd

√
md

ms

[
ηd

rd

ms

mb

√
ru (1 − rd) − Re(V ′

cb)

]
,

Im(VtdV ∗
tb) � −ηd

√
md

ms

Im(V ′
cb) . (20)

Then the definition of β in Eq. (13) leads us to
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Fig. 3. The numerical outputs of |Vub|/|Vcb| versus sin 2β and α versus γ in the (ηu, ηd) = (+1,+1) case.

tanβ = − Re(VcdV ∗
cb)Im(VtdV ∗

tb) − Im(VcdV ∗
cb) Re(VtdV ∗

tb)

Re(VcdV ∗
cb) Re(VtdV ∗

tb) + Im(VcdV ∗
cb) Im(VtdV ∗

tb)

� ηu ηd sinφ1

√
mu

mc

ms

md

− ηd

rd

ms

mb

√
ru (1 − rd)

×
[

1 − ηu ηd cosφ1

√
mu

mc

ms

md

]
Im(V ′

cb)

|Vcb|2 . (21)

Given the experimental value of sin 2β in Eq. (14), we arrive at tanβ = 0.394 ± 0.015. In the 
r ∼ 1 region the first term of Eq. (21) is dominant, and thus ηuηd sinφ1 is required to be positive. 
Note that this term is at most 0.322, if the values of quark masses in Eq. (12) are input. Hence 
the second term of Eq. (21) has to be positive too. In other words, ηd sinφ2 should be negative 
because Im(V ′

cb) is proportional to sinφ2. Furthermore, ηuηd cosφ1 is likely to be negative to 
enhance the contribution of the second term of Eq. (21) to tanβ . When the r ∼ 0.5 region is con-
cerned, we find that the second term of Eq. (21) becomes important, so ηd sinφ2 is still required 
to be negative. Since this term has a chance to saturate the experimental value of tanβ , the first 
term of Eq. (21) is possible to be negative in such a case. In fact, ηuηd sinφ1 must be negative in 
the r ∼ 0.5 region if we take into account the constraint from |Vub|. With the help of Eqs. (17)
and (18), we have

|Vub| �
∣∣∣∣∣
√

md

mb

ms

mb

(
1

rd
− 1

)
+ ηu ηd sinφ1

√
mu

mc

∣∣Im(V ′
cb)
∣∣∣∣∣∣∣ . (22)

Taking rd = 0.5 for example, we find that the first term of Eq. (22) is about 0.0044, larger than 
the experimental value |Vub| � 0.0036. In this case the second term of Eq. (22) should be neg-
ative so as to partially offset the contribution from the first term. Therefore, we are left with 
ηuηd sinφ1 < 0. However, when the first term is large enough, the second term will fail to offset 
its extra contribution, bringing about a lower bound about 0.3 for rd as shown in Fig. 1(a).

To summarize, we have performed a new numerical analysis of the four-zero ansatz of quark 
mass matrices by using the updated values of quark masses and CKM parameters. We find a new 
part of the parameter space of this ansatz — the r ∼ 0.5 region together with the relevant corre-
lation between φ1,2 and ηu,d. We have also explained the salient features of the whole parameter 
space of Mu and Md in some analytical approximations. As a byproduct, Fig. 3 shows the nu-
merical outputs of |Vub|/|Vcb| versus sin 2β and α versus γ in the (ηu, ηd) = (+1, +1) case. One 
can see that the uncertainties associated with the CP-violating quantities α and γ remain quite 
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significant, and they mainly originate from the uncertainties of ms , ru and rd. In the next section, 
we shall go back to the quark mass matrices themselves to look at their structures and to see 
whether they assume some special patterns with fewer free parameters.

3. Special four-zero patterns and model building

In the Fritzsch ansatz of quark mass matrices, the first term of Eq. (22) should be replaced 
with (ms/mb)

√
md/mb , whose size is about 0.00078. This result can easily be understood from 

the trace of MF
u,d (i.e., A = λ1 + λ2 + λ3), which gives rise to rd = 1 −O(ms/mb) in the down 

sector. Since the upper limit that the second term of Eq. (22) can reach is about 0.00236, the 
experimental value of |Vub| has no way to be saturated by these two terms in the Fritzsch ansatz. 
When the four-zero texture of Mu,d is concerned, the existence of nonzero (2, 2) entries modifies 
the trace of Mu,d to the form A + B̃ = λ1 + λ2 + λ3. The constraint on rd is consequently 
relaxed, and it actually becomes a free parameter. Given a typical value rd = 0.9 in the r ∼ 1
region, for example, the first term of Eq. (22) contributes a value 0.0014 to |Vub| such that the 
experimental result of |Vub| can be well fitted. In this case the magnitude of B̃ is about 0.1λ3. To 
avoid a relatively large λ2 from such a large B̃ , the three parameters A, B̃ and |B| must satisfy 
an approximate geometrical relation [9] up to a correction of O(m2/m3):

|B|
A

� B̃

|B|
[

1 +O
(

m2

m3

)]
. (23)

This observation is certainly supported by the numerical results presented in Fig. 1. In light of 
the definition A/m3 = r , B̃/m3 � 1 − r holds as a good approximation because of |λ1 + λ2| �
λ3 = m3. Hence Eq. (23) implies |B|/m3 � √

r (1 − r). In short, the (2, 3) sectors of Mu and 
Md have the same structure which can be parameterized as

M(2,3)
u ∼ Au

(
ε2 ε

ε 1

)
, M

(2,3)
d ∼ Ad

(
ε2 ε

ε 1

)
, (24)

where ε � √
(1 − r) /r , and its value is about 0.3 in the r ∼ 1 region of the parameter space. 

Eq. (24) hints at a common origin of the (2, 3) sectors of Mu and Md, and thus it can be taken 
as a guideline for model building. However, a numerical analysis shows that such an up–down 
parallelism is slightly broken by the (2, 2) entries of quark mass matrices. In addition, their (1, 2)

entries do not share this kind of parallelism, as one can see in Fig. 1(d). With the help of Eq. (6), 
we typically take ru � rd � 0.9 and illustrate the finite matrix elements of Mu and Md as follows:

Mu � Au

( 0 0.0002 0
0.0002 0.11 0.31

0 0.31 1

)
, Md � Ad

( 0 0.005 0
0.005 0.13 0.31

0 0.31 1

)
. (25)

It is worth reiterating that the mild hierarchy in the (2, 3) sectors of quark mass matrices is crucial 
to fit current experimental data.

In the r ∼ 0.5 region of the parameter space of quark mass matrices Mu and Md, there is a 
particularly interesting case,

Au = B̃u , Ad = B̃d , (26)

which deserves special attention. We have verified that these exact equalities are really allowed 
in our numerical calculations. The corresponding parameter space is certainly a part of the pa-
rameter space restricted by r ∼ 0.5. In this special case, the (2, 3) sectors of Mu and Md have a 
neat form:
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M(2,3)
u ∼ Au

(
1 1 − 2mc

mt

1 − 2mc

mt
1

)
, M

(2,3)
d ∼ Ad

(
1 1 − 2ms

mb

1 − 2ms

mb
1

)
. (27)

A typical numerical illustration of the structures of Mu and Md turns out to be

Mu � Au

( 0 0.0005 0
0.0005 1 0.993

0 0.993 1

)
, Md � Ad

( 0 0.013 0
0.013 1 0.96

0 0.96 1

)
. (28)

One can see that the (2, 3) sectors of quark mass matrices are suggestive of an underlying flavor 
symmetry which controls the second and third quark families.

In fact, the 2 ↔ 3 permutation symmetry of quark mass matrices, which is quite similar to 
the striking μ ↔ τ permutation symmetry in the lepton sector [16], has been conjectured long 
before [17]. Under this simple flavor symmetry the mass matrix takes the form

M =
( 0 C C

C A B

C B A

)
. (29)

But such a scenario has been ruled out by the present experimental data, as pointed out in 
Ref. [18]. This situation can be easily understood by taking a look at the expression of |Vub|
in Eq. (17), where the two terms originate from Ou and Od in the following way:

θd
13 �⇒

√
md

mb

ms

mb

(
1

rd
− 1

)
, θu

12 Vcb �⇒
√

mu

mc

Vcb . (30)

If there were an exact 2 ↔ 3 permutation symmetry, both θu
13 and θd

13 would have to be vanish-
ing. However, the second term alone is unable to fit the experimental value of |Vub|, as already 
discussed above. Hence we conclude that quark mass matrices might possess a partial 2 ↔ 3
permutation symmetry such that

M22 = M33 , M12 = M13 . (31)

Since there is a large hierarchy between (1, 2) and (3, 3) entries of M (i.e., M33 � M12), the 
2 ↔ 3 permutation symmetry can be taken as a starting point for model building, and it is broken 
later on by introducing a small (1, 2) entry. Furthermore, the equality M22 = M23 = M33 should 
be a good leading-order approximation.

Having identified two special patterns of four-zero quark mass matrices, we proceed to dis-
cuss the model building issues in order to derive them. There are several ways to determine or 
constrain quark flavor structures, among which flavor symmetries should be the most popular and 
powerful one. So far a number of flavor symmetries, such as the Abelian U(1) flavor group [19]
and the non-Abelian S(3) flavor group [20], have been tried in this respect. Before introducing a 
flavor symmetry to realize the above special patterns of quark mass matrices, let us discuss what 
the Hermiticity of Mu,d implies for model building.

Quark mass matrices originate from the Yukawa interactions and are in general non-Hermitian 
and complex. There are two possibilities of making them Hermitian: (a) a proper transformation 
of the right-handed quark fields, or equivalently a proper choice of the flavor basis, as one has 
done in obtaining Eq. (2) or (3) in the SM or its extensions which have no flavor-changing 
right-handed currents; (b) imposing a reasonable assumption, such as the parity symmetry to 
be discussed soon, on the Lagrangian of Yukawa interactions. Note that case (a) is no more 
favored for our present purpose, because an implementation of possible flavor symmetries is also 
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basis-dependent, and hence it is hard to coincide with the chosen basis of Hermitian quark mass 
matrices in most cases. So let us focus on case (b) in the following model-building exercises.

Under the parity symmetry, a flavor theory should be invariant when a left-handed fermion 
field is replaced by its right-handed counterpart (i.e., ψL → ψR), or vice versa. As for the Yukawa 
interactions of quark fields, the parity transformation is

yijψ
i
L〈H 〉ψj

R + y∗
ijψ

j
R〈H 〉ψi

L ←→ yijψ
i
R〈H 〉ψj

L + y∗
ijψ

j
L〈H 〉ψi

R , (32)

where i and j are the quark flavor indices, and 〈H 〉 stands for the vacuum expectation value 
(VEV) of the Higgs field. The invariance of Yukawa interactions under parity transformation 
requires the Yukawa coupling matrix elements to satisfy the condition yij = y∗

ji , and hence the 
corresponding quark mass matrix must be Hermitian in the flavor space. We are therefore mo-
tivated to consider Hermitian quark mass matrices in the framework of the Left–Right (LR) 
symmetric model with an explicit parity symmetry [21].

The LR model extends the SM gauge groups to SU(2)L ×SU(2)R ×U(1)B−L, where SU(2)R
is the opposite of SU(2)L and acts only on the iso-doublets constituted by the right-handed fields, 
and B−L stands for the baryon number minus the lepton number. All the fermion fields are 
grouped into iso-doublets as follows:

Qi
L =

(
ui

L

di
L

)
, Qi

R =
(

ui
R

di
R

)
, Li

L =
(

νi
L

ei
L

)
, Li

R =
(

νi
R

ei
R

)
. (33)

In the present work we concentrate on the quark sector and leave out the lepton fields Li
L and 

Li
R. At the scale �R which is higher than the electroweak scale, SU(2)R ×U(1)B−L is broken to 

U(1)Y. The residual SU(2)L and U(1)Y are exactly the SM gauge groups which are subsequently 
broken by a bi-doublet field � under SU(2)L × SU(2)R:

� =
(

φ0
1 φ+

2

φ−
1 φ0

2

)
−→ VEV −→ 〈�〉 =

(
κ

κ ′
)

. (34)

The six quarks acquire their masses via their Yukawa interactions with �:

(
ui

L di
L

)[
yij

(
κ

κ ′
)

+ y′
ij

(
κ ′

κ

)](
u

j
R

d
j
R

)
+ h.c. (35)

In the minimal non-supersymmetric LR model κ ′ has a relative phase as compared with κ , and 
this may violate the Hermiticity of quark mass matrices. Hence we prefer to (but not necessarily) 
work in the framework of the supersymmetric (SUSY) LR model [22]. Note that the y ′

ij term in 
Eq. (35) will be forbidden by the holography requirement of the superpotential in this framework.

Now that the issue of Hermiticity has been settled, let us continue to build quark mass models 
under certain flavor symmetries in a usual way. We begin with a model that can lead to a four-zero 
texture of Mu and Md in the r ∼ 1 region. It is easy to derive the special pattern of Mu,d in 
Eq. (24) with the help of the Froggatt–Nielsen (FN) mechanism [19]. The point is to introduce a 
global U(1)FN symmetry to structure the quark mass matrices. All the fields relevant for quark 
masses and their charges under U(1)FN are listed in Table 2. According to the convention in 
SUSY, Qi

R is represented by its corresponding left-handed chiral superfield Qic
R . In the SUSY 

LR models, at least two bi-doublets are needed to avoid the exact parallelism between Mu and 
Md. In our model four bi-doublets are introduced, and their VEVs are written as

〈�1〉 =
(

κ1
κ ′
)

, 〈�2〉 =
(

κ2
κ ′
)

,

1 2
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Table 2
The fields relevant for the Yukawa couplings and their charges under U(1)FN.

Q1
L/Q1c

R Q2
L/Q2c

R Q3
L/Q3c

R �1 �2 �3/�4 S1 S2

−5 4 0 0 −1 1 −4 −1

〈�3〉 =
(

κ3
κ ′

3

)
, 〈�4〉 =

(
κ4

κ ′
4

)
. (36)

In addition, two gauge singlets S1 and S2 are introduced to spontaneously break the U(1)FN
flavor symmetry.

For clarity, let us explore the phenomenological consequences of this model step by step. The 
contribution from �1 can be expressed as

y33Q
3c
R �1Q

3
L + y23Q

2c
R �1Q

3
L
S1

�
+ y∗

23Q
3c
R �1Q

2
L
S1

�
+ y22Q

2c
R �1Q

2
L

(
S1

�

)2

, (37)

where y22 and y33 are real, but y23 is complex. � is the scale where all the fields associated 
with the FN mechanism reside. The non-renormalizable operators arise from integrating out the 
heavy fields which are not explicitly given in Table 2, and thus they are suppressed by �. The key 
point of the FN mechanism is to assume that the ratios of 〈S1〉 and 〈S2〉 to � are small quantities 
which can be generally denoted as ε, such that each element of quark mass matrices is encoded 
in a power of ε. Here we have identified this small quantity with the one in Eq. (24), and thus its 
magnitude is about 0.3. When S1 and �1 acquire their VEVs, the (2, 3) sectors of Mu and Md
are of the form

M(2,3)
u ∼ y33κ1

⎛
⎜⎝

y22

y33
ε2 y23

y33
ε

y∗
23

y33
ε 1

⎞
⎟⎠ , M

(2,3)
d ∼ y33κ

′
1

⎛
⎜⎝

y22

y33
ε2 y23

y33
ε

y∗
23

y33
ε 1

⎞
⎟⎠ , (38)

which can reproduce the flavor structure in Eq. (24). There is the exact parallelism between up 
and down quark sectors, because they have the same origin (i.e., from �1 here). However, this 
situation also brings about two phenomenological problems. One of them is that the (2, 2) entries 
of Mu and Md actually do not respect this exact parallelism, as we have seen in Eq. (25). The 
other problem is that the (2, 3) entries of Mu and Md should have a phase difference, so as to 
assure φ2 = 0 or 2π .

To address these two problems, let us take account of the contribution from �2 as follows:

y′
23Q

2c
R �2Q

3
L

(
S2

�

)3

+ y′∗
23Q

3c
R �2Q

2
L

(
S2

�

)3

+ y′
22Q

2c
R �2Q

2
L
S1S

3
2

�4
. (39)

This treatment modifies Eq. (38) to the form

M(2,3)
u ∼ y33κ1

⎛
⎜⎜⎝

y22

y33
ε2 + y′

22

y33

κ2

κ1
ε4 y23

y33
ε + y′

23

y33

κ2

κ1
ε3

y∗
23

y33
ε + y′∗

23

y33

κ2

κ1
ε3 1

⎞
⎟⎟⎠ ,

M
(2,3)
d ∼ y33κ

′
1

⎛
⎜⎜⎝

y22

y33
ε2 + y′

22

y33

κ ′
2

κ ′
1
ε4 y23

y33
ε + y′

23

y33

κ ′
2

κ ′
1
ε3

y∗
23 ε + y′∗

23 κ ′
2
′ ε

3 1

⎞
⎟⎟⎠ . (40)
y33 y33 κ1
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If the ratios κ1/κ2 and κ ′
1/κ

′
2 are close but not exactly equal to each other, the difference between 

the (2, 2) entries of Mu and Md will be of O(ε4) ∼ 0.01, in agreement with the numerical result 
given in Eq. (25). The difference between the (2, 3) entries of Mu and Md seems to be of O(ε3) ∼
0.03 and in conflict with Eq. (25). One may essentially get around this problem by assuming that 
the phase difference between y23 and y′

23 is about π/2, such that the absolute values of Mu23

and Md23 only have a negligibly small difference of O(ε5) ∼ 0.003. But the phase difference 
between Mu23 and Md23 is of O(ε2) ∼ 0.1, just consistent with the value of φ2 illustrated in 
Section 2.

Finally, �3 and �4 can offer finite masses for the first quark family through the terms

y12Q
1c
R �3Q

2
L + y∗

12Q
2c
R �3Q

1
L + y′

12Q
1c
R �4Q

2
L + y′∗

12Q
2c
R �4Q

1
L , (41)

from which we obtain

Mu12 = M∗
u21 = y12κ3 + y′

12κ4 , Md12 = M∗
d21 = y12κ

′
3 + y′

12κ
′
4 . (42)

The reason that we arrange �3 and �4 to have the same quantum number is rather simple: in 
this case the phases of Mu12 and Md12 can be different, such that we are left with a nonzero φ1. 
In a complete flavor-symmetry model the smallness of Mu12 and Md12 should also be explained 
via the FN mechanism as we have done for the (2, 3) sectors of Mu and Md. Instead of repeating 
a similar exercise, here we simply assume that κ3, κ ′

3, κ4 and κ ′
4 are much smaller than their 

counterparts κ1, κ ′
1, κ2 and κ ′

2. Of course, the elements M11 and M13 are vanishing as limited by 
the relevant flavor quantum numbers.

When it comes to the particular case M22 = M33, a non-Abelian flavor symmetry is needed 
to realize this equality. The simplest candidate of this kind is the S(3) group which has three 
irreducible representations 1, 1′ and 2. The tensor products of these representations can be de-
composed as follows [23]:(

x1
x2

)
2
×
(

y1
y2

)
2
= (x1y1 + x2y2)1 + (x1y2 − x2y1)1′ +

(
x1y2 + x2y1
x1y1 − x2y2

)
2

,(
x1
x2

)
2
× y1′ =

(−x2y

x1y

)
2

, x1′ × y1′ = (xy)1 . (43)

The quark fields are organized to be the representations of S(3) in the following way:

Q1
L − 1 , Q1c

R − 1 ,

(
Q2

L

Q3
L

)
− 2 ,

(
Q2c

R

Q3c
R

)
− 2 , (44)

while the bi-doublets introduced and their representations under the S(3) group are:

�1 − 1 , �2 − 1′ ,

(
�3
�4

)
− 2 . (45)

The VEVs of bi-doublets are specified to be

〈�1〉 =
(

κ1
κ ′

1

)
, 〈�2〉 =

(
κ2

κ ′
2

)
,

〈�3〉 =
(

κ3
κ ′

3

)
, 〈�4〉 =

(
0

0

)
. (46)

In this model the equality of M22 and M33 results from the operator
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y1

(
Q2c

R

Q3c
R

)
�1

(
Q2

L

Q3
L

)
�⇒ y1

[
Q2c

R 〈�1〉Q2
L + Q3c

R 〈�1〉Q3
L

]
, (47)

and their values are given by

Mu22 = Mu33 = y1κ1 , Md22 = Md33 = y1κ
′
1 . (48)

In comparison, the elements M23 and M32 are generated by the operators

y2

(
Q2c

R

Q3c
R

)
�2

(
Q2

L

Q3
L

)
�⇒ y2

[
Q2c

R 〈�2〉Q3
L + Q3c

R 〈�2〉Q2
L

]
,

y3

(
Q2c

R

Q3c
R

)(
�3
�4

)(
Q2

L

Q3
L

)
�⇒ y3

[
Q2c

R 〈�3〉Q3
L + Q3c

R 〈�4〉Q2
L

]
, (49)

which lead us to

Mu23 = y2κ2 + y3κ3 Mu32 = −y2κ2 + y3κ3 ,

Md23 = y2κ
′
2 + y3κ

′
3 Md32 = −y2κ

′
2 + y3κ

′
3 . (50)

Notice that the Hermiticity of quark mass matrices as required by the LR symmetry leaves us 
y∗

2 = −y2 and y∗
3 = y3 (i.e., y2 is imaginary while y3 is real). If only one of the y2 and y3

terms exists, φ2 will be zero, so both of them are necessary. Another noteworthy point is that 
the operators in Eqs. (47) and (49) are completely independent of each other, so it is difficult 
to understand why M23 is so close to M22 and M33. We conjecture that these two operators are 
possible to come from the same tensor product in a larger group, so that M22 = M33 = M23 can 
be obtained as the leading-order approximation.

Finally, let us consider the operators

y3Q
1c
R

(
�2
�3

)(
Q2

L

Q3
L

)
+ y∗

3

(
Q2c

R

Q3c
R

)(
�2
�3

)
Q1

L �⇒
y3Q

1c
R 〈�2〉Q2

L + y∗
3Q2c

R 〈�2〉Q1
L . (51)

They lead us to the nonzero (1, 2) entries of quark mass matrices:

Mu12 = M∗
u21 = y3κ2 , Md12 = M∗

d21 = y3κ
′
2 . (52)

Note that it is 〈�3〉 = 0 that ensures the vanishing of M13 and M31. There is also a problem that 
φ1 equals zero, but it can be overcome by introducing the column vector (�4, �5)

T. Similar to 
(�2, �3)

T, �4 acquires its VEV but �5 does not. In this case Eq. (52) is modified to the form

Mu12 = M∗
u21 = y3κ2 + y′

3κ4 , Md12 = M∗
d21 = y3κ

′
2 + y′

3κ
′
4 . (53)

We just need κ4/κ2 = κ ′
4/κ

′
2 to make φ1 nonzero. The last remarkable issue is that one needs to 

impose the FN quantum numbers on Q1
L and Q1c

R , in order to explain why the magnitude of M12
is suppressed by a power of ε as compared with those of M22 and M23. Such a treatment can also 
help avoid a large M11 arising from the operator y5Q

1c
R 〈�1〉Q1

L. If we assign an FN quantum 
number n to both Q1

L and Q1c
R , for instance, the contribution of this operator will be suppressed 

by ε2n and thus negligibly small.
In short, we have identified two special four-zero patterns of quark mass matrices and dis-

cussed two toy models for realizing them. We should point out that the introduction of so many 
bi-doublet Higgs fields may cause the flavor-changing-neutral-current (FCNC) problem. But this 
problem can be avoided by assuming that the LR symmetry breaks at a very high scale and there 



Z.-z. Xing, Z.-h. Zhao / Nuclear Physics B 897 (2015) 302–325 317
is just one (two) effective Higgs field(s) (as linear combinations of the above Higgs fields) at the 
low scale in which case we go back to the SM (MSSM) situation. Otherwise, we can address 
this issue by introducing some flavon fields located at a superhigh energy scale to play the role 
of bi-doublets as multiple representations of the flavor symmetries. In this case, we do not need 
Higgs fields other than the usual ones which have already been required for other purposes rather 
than the flavor physics. After integrating out the flavon fields, there will be no trace of the fla-
vor physics except that the Yukawa couplings have been constrained by the flavor symmetries. 
This way of preventing the flavor physics from disturbing the other physics is widely used in 
flavor-symmetry models for the lepton sector [24].

4. On the stability of the four-zero texture

As shown in Section 3, the four-zero texture of quark mass matrices may result from an under-
lying flavor symmetry. But the failure in discovering any new physics of this kind indicates that it 
is likely to reside in a superhigh energy scale, such as the grand unification theory (GUT) scale. 
This means that a flavor-symmetry model should be built somewhere far above the electroweak 
scale and the RGE running effects have to be taken into account when its phenomenological 
consequences are confronted with the experimental data at low energies [25]. One may follow 
two equivalent ways to consider the evolution of energy scales, provided there is no new physics 
between the flavor symmetry scale �FS and the electroweak scale MZ [26]: (a) the first step is to 
figure out quark masses and flavor mixing parameters from Mu and Md at �FS, and the second 
step is to run these physical quantities down to MZ via their RGEs; (b) the first step is to evolve 
Mu and Md from �FS down to MZ via their RGEs, and the second step is to calculate quark 
masses and flavor mixing parameters from the corresponding quark mass matrices at MZ. Here 
we take advantage of way (b) to examine the stability of texture zeros of Mu and Md against the 
evolution of energy scales in an analytical way. The RGE effect on the Fritzsch texture of quark 
mass matrices has been studied in a similar way [26,27].

At the one-loop level, the RGEs of the quark Yukawa coupling matrices in the SM can be 
written as

16π2 dYq(t)

dt
=
[

3

2
Sq(t) − Gq(t)1 + T (t)1

]
Yq(t) , (54)

where t = ln(μ/MZ), and the subscript “q” stands for “u” and “d”. The contributions of the 
charged leptons and neutrinos to Eq. (54) have been omitted, because they are negligibly small 
in the SM. Denoting the VEV of the Higgs field as v, we can express the four-zero texture of Yu
and Yd at �FS as follows:

Yu(�FS) = 1

v
Mu(�FS) =

⎛
⎝ 0 cu 0

cu b̃u bu

0 bu au

⎞
⎠ ,

Yd(�FS) = 1

v
Md(�FS) =

⎛
⎝ 0 cd 0

c∗
d b̃d bd

0 b∗
d ad

⎞
⎠ . (55)

Without loss of generality for CP violation, we have chosen bu and cu to be real in Eq. (55). The 
terms Gq(t) and T (t) read

Gu = Gd + g2
1 = 8g2

3 + 9
g2

2 + 17
g2

1 , T = 3Tr
(
YuY

†
u + YdY

†
d

)
, (56)
4 12
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which arise from quantum corrections to the quark and Higgs field strengths, respectively. They 
are flavor-blind, and thus proportional to the identity matrix in the flavor space. Since their effects 
are simply to rescale quark mass matrices as a whole at a lower energy scale, they will be dropped 
for the moment. Namely, we are mainly concerned about the first term in Eq. (54): Su = −Sd =
YuY

†
u − YdY

†
d , which governs the nonlinear evolution of Yq. Defining Hq = YqY

†
q , let us rewrite 

Eq. (54) by dropping its Gq(t) and T (t) terms:

32π2

3

dHq

dt
= SqHq + HqSq . (57)

In a good approximation Sq can be expressed as

Su = −Sd �
(0 0 0

0 �2 �3
0 �3 �1

)
, (58)

where �1 = a2
u + b2

u, �2 = b2
u + b̃2

u and �3 = bu(au + b̃u). Then we solve the differential equa-
tions in Eq. (57) and obtain

Hu(MZ) �

⎛
⎜⎜⎜⎝

c2
u cub̃uρ − ρ−1

�1+�2
cuau

(
aub̃u − b2

u

)
cubuρ + ρ−1

�1+�2
cubu

(
aub̃u − b2

u

)
· · · c2

u + �2ρ
2 − 2 ρ2−ρ

�1+�2

(
aub̃u − b2

u

)2
�3ρ

2

· · · · · · �1ρ
2 − 2 ρ2−ρ

�1+�2

(
aub̃u − b2

u

)2

⎞
⎟⎟⎟⎠ ,

(59)

where the elements denoted as “· · ·” can be directly read off by considering the Hermiticity of 
Hu, and ρ describes the RGE running effects from �FS to MZ :

ρ = exp

⎧⎨
⎩ 3

32π2

0∫
tFS

y2(t ′)dt ′
⎫⎬
⎭ . (60)

Here tFS = ln (�FS/MZ), and y(t ′) is the Yukawa coupling eigenvalue of the top quark which 
evolves according to

8π2 dy2

dt
=
(

9

2
y2 − Gu

)
y2 . (61)

For illustration, ρ ∼ 0.9 when �FS ∼ 1015 GeV, as shown in Fig. 4. On the other hand,

Hd(MZ)

�

⎛
⎜⎜⎜⎜⎜⎜⎝

|cd|2 cdb̃dρ
−1− ρ−1−1

�1+�2
cd

(
�1b̃d−�3bd

)
cdbdρ

−1− ρ−1−1
�1+�2

cd

(
�2bd−�3b̃d

)

···
∣∣cd
∣∣2 +

(∣∣bd
∣∣2 + b̃2

d

)
ρ−2 + ρ−2−ρ−1

�1+�2
×
[
�3

(
ad + b̃d

)(
bd + b∗

d

)
− 2�1

(∣∣bd
∣∣2 + b̃2

d

)] bd

(
ad + b̃d

)
ρ−1 + ρ−2−ρ−1

�1+�2
×
(
a2

d + 2
∣∣bd
∣∣2 + b̃2

d

)
�3

··· ···
(
a2

d + ∣∣bd
∣∣2)ρ−2 + ρ−2−ρ−1

�1+�2
×
[
�3

(
ad + b̃d

)(
bd + b∗

d

)
− 2�2

(
a2

d + ∣∣bd
∣∣2)]

⎞
⎟⎟⎟⎟⎟⎟⎠

(62)

The RGE-corrected quark mass matrices can then be extracted from Eqs. (59) and (62):
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Fig. 4. An illustration of the changes of σq and ρ with the scale �FS in the SM.

Mu(MZ) � σuv

⎛
⎜⎜⎝

0 cu 0

· · · b̃uρ − ρ−1
�1+�2

au

(
aub̃u − b2

u

)
buρ + ρ−1

�1+�2
bu

(
aub̃u − b2

u

)
· · · · · · auρ − ρ−1

�1+�2
b̃u

(
aub̃u − b2

u

)
⎞
⎟⎟⎠ ,

Md(MZ) � σdv

⎛
⎜⎝

0 cd 0

c∗
d b̃dρ

−1 + ρ−1−1
�1+�2

(
�3b

∗
d − �1b̃d

)
bdρ

−1 + ρ−1−1
�1+�2

(�3ad − �1bd)

0 b∗
dρ−1 + ρ−1−1

�1+�2

(
�3b̃d − �2b

∗
d

)
adρ

−1 + ρ−1−1
�1+�2

(�3bd − �2ad)

⎞
⎟⎠ ,

(63)

where

σq = exp

⎧⎨
⎩ 1

16π2

0∫
tFS

[
3y2(t ′) − Gq(t

′)
]

dt ′
⎫⎬
⎭ (64)

is the overall rescaling factor of quark mass matrices brought back from the Gq(t) and T (t) terms 
of Eq. (54) that were tentatively dropped in Eq. (57). Apparently, Md(MZ) is not Hermitian any 
more, because the RGE of Yd(t) does not respect Hermiticity. To illustrate, the numerical changes 
of σu and σd with the scale �FS are shown in Fig. 4 in the framework of the SM. Of course, the 
above analytical results can exactly reproduce those obtained in Ref. [26] for the Fritzsch ansatz 
of quark mass matrices when b̃u and b̃d are switched off.

Note that the geometrical relation in Eq. (23) can be reexpressed as (aqb̃q −b2
q)/(�1 +�2) ∼

m2/m3. Hence in each entry of the (2, 3) sector of Mu(MZ) the second term is suppressed by a 
factor proportional to (1 − ρ) mc/mt � 10−3 as compared with the first term. As for Md(MZ), 
let us take its (2, 3) entry as an example to look at the corresponding RGE correction. Because 
of the parallelism between (au, bu, b̃u) and (ad, Re(bd), b̃d), we find

�3ad − �1Re(bd) = �1 Re(bd)

[
�3

�1

ad

Re(bd)
− 1

]

� �1Re(bd)

[
�3

�1

au

bu
− 1

]
= Re(bd)

(
aub̃u − b2

u

)
. (65)

So the real part of the second term of Md23 at MZ is suppressed by a factor proportional to 
(1 − ρ) mc/mt � 10−3 as compared with the real part of its first term. In other words, the real 
part of Md23 is approximately equal to ρ−1Re(bd) at MZ . According to our phase assignment 
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in Eq. (55), φ2 = arg(bu) − arg(bd) = − arg(bd) holds. Hence the phase of bd is equal to −φ2
and must be close to 0 or −2π . In the r ∼ 1 region where �2 is much smaller than �1, it is 
easy to see that the imaginary part of the (2, 3) entry of Md(MZ) is about Im(bd). That means 
arg(bd) � Im(bd)/Re(bd) is rescaled by ρ due to the RGE effects, or equivalently

φ2(�FS) � ρ−1φ2(MZ) . (66)

In a word, the four texture zeros of quark mass matrices are essentially stable against the evo-
lution of energy scales. To be more specific, Mu and Md develop the overall factors σu and σd
during their running from �FS down to MZ , respectively; and their finite entries (au, bu, b̃u) and 
(ad, Re(bd), b̃d) are rescaled by ρ and ρ−1, respectively.

To illustrate the RGE-induced corrections, let us give a numerical example to compare be-
tween Eq. (55) at �FS and Eq. (63) at MZ . We first figure out the values of quark masses and 
flavor mixing parameters at �FS ∼ 1011 GeV by solving the one-loop RGEs numerically:

mu = 0.69 MeV , mc = 320 MeV , mt = 95.6 GeV ;
md = 1.4 MeV , ms = 29.1 MeV , mb = 1.3 GeV ;
|Vus | = 0.225 , |Vcb| = 0.0458 , |Vub| = 0.00387 , (67)

and the value of sin 2β is almost unchanged from MZ to �FS (or vice versa) within the accuracy 
that we need. The choice of this specific scale is for two simple reasons: on the one hand, it is 
expected to be around the canonical seesaw [28] and leptogenesis [29] scales; on the other hand, 
it is close to the energy scale relevant for the possible vacuum stability issue of the SM [30]. 
Therefore,

Yu(�FS) � 10−1

( 0 9 × 10−4 0
· · · 0.6 1.7
· · · · · · 4.9

)
,

Yd(�FS) � 10−3

( 0 0.04 e−1.67i 0
· · · 1.0 2.4 e0.14i

· · · · · · 6.7

)
. (68)

In comparison, the corresponding quark mass matrices at the electroweak scale are

Mu(MZ) � 10−1σuv

(
0 9 × 10−4 0
· · · 0.6ρ − 8 · 10−3 (ρ − 1) 1.7ρ + 3 × 10−3 (ρ − 1)

· · · · · · 4.9ρ − 10−3 (ρ − 1)

)
,

Md(MZ) � 10−3σdv

(
0 0.04 e−1.67i 0
· · · 1.0ρ−1 − (0.2 + 0.1i) ε 2.4ρ−1 + 0.3i − 0.04ε

· · · (2.4 − 0.3i) ρ−1 + (0.05 + 0.04i) ε 6.7ρ−1 + (0.01 + 0.1i) ε

)
, (69)

where ε = ρ−1 − 1 is a small value of O(0.1) or much smaller. This numerical exercise con-
firms our qualitative analysis made above. In particular, the imaginary part of the (2, 3) entry of 
Md(MZ) is really independent of ρ, and its real part is proportional to ρ−1.

Now let us turn to the running behaviors of quark masses and flavor mixing parameters. Since 
cu is negligibly small in magnitude as compared with au, bu and b̃u, the invariants of the (2, 3)

submatrix of Mu(�FS) and Mu(MZ) lead us to

mc(�FS) + mt(�FS) � v
(
au + b̃u

)
,

mc(�FS) mt (�FS) � v2
(
aub̃u − b2

u

)
;
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mc(MZ) + mt(MZ) � σuv
(
au + b̃u

)
ρ ,

mc(MZ) mt (MZ) � σ 2
u v2

(
aub̃u − b2

u

)
ρ . (70)

These relations indicate that mc and mt change with the energy scale in the following way:

mt(�FS) � σ−1
u ρ−1mt(MZ) , mc(�FS) � σ−1

u mc(MZ) . (71)

When cu is concerned, a similar trick yields mu(�FS) � σ−1
u mu(MZ). It is easy to verify that the 

similar relations hold in the down sector:

mb(�FS) � σ−1
d ρ mb(MZ) , ms(�FS) � σ−1

d ms(MZ) , (72)

and md(�FS) � σ−1
d md(MZ). These results clearly show that the mass ratios mu/mc and md/ms

are essentially free from the RGE corrections.
To see how the flavor mixing parameters evolve from �FS down to MZ , we take a new look at 

Eq. (17). Above all, the dimensionless parameters ru and rd are independent of the energy scale 
to a good degree of accuracy. The reason is simply that mt (or mb) and Au (or Ad) have nearly the 
same running behaviors, as one can see from Eqs. (63), (71) and (72). It is also straightforward to 
conclude that |Vus | is stable against the evolution of energy scales. In view of ru � rd and φ2 � 0, 
we arrive at the approximation

|Vcb| �
√

(1 − ru) rd

∣∣∣∣12 ηd

rd

ms

mb

− i sinφ2

∣∣∣∣ . (73)

Given Eqs. (66) and (72), the running behavior of |Vcb| turns out to be

|Vcb(�FS)| � ρ−1 |Vcb(MZ)| . (74)

With the help of this result and Eq. (17), we immediately obtain

|Vub(�FS)| � ρ−1 |Vub(MZ)| . (75)

In addition, Eq. (21) tells us that β is nearly scale-independent. It is easy to check that α and γ , 
the other two inner angles of the CKM unitarity triangle, are also free from the RGE corrections 
at the one-loop level [31].

The above results can simply be translated into the ones for three flavor mixing angles and 
one CP-violating phase in the standard parametrization of the CKM matrix:

θ12(�FS) � θ12(MZ) , θ23(�FS) � ρ−1θ23(MZ) ,

θ13(�FS) � ρ−1θ13(MZ) , δ(�FS) � δ(MZ) . (76)

Of course, α, β and γ are all the functions of δ in this parametrization. As for the Jarl-
skog invariant J = cos θ12 sin θ12 cos2 θ13 sin θ13 cos θ23 sin θ23 sin δ [32], it is easy to arrive at 
J (�FS) � ρ−2J (MZ) in the same approximation. Such a rephasing-invariant measure of weak 
CP violation is actually tiny, only about 3 × 10−5 at MZ .

Finally, let us briefly comment on a possible implication of the loss of Hermiticity of Md
running from �FS down to MZ . We conjecture that it might have something to do with the 
strong CP problem [33], which is put forward due to the unnatural smallness of the parameter 
θ = θQCD + θQFD. Here θQCD is the coefficient of the CP-violating term in the QCD Lagrangian 
[34],
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Lθ = θQCD
g2

3

32π2
GμνG̃

μν ; (77)

and θQFD comes from the quark flavor sector,

θQFD = arg [Det (MuMd)] . (78)

The experimental upper bound of θ is at the 10−11 level [35], in sharp contrast with a natural
value of O(1) from a theoretical point of view. The demand for explaining why θ is so tiny poses 
the strong CP problem. An attractive solution for this problem is the Peccei–Quinn mechanism 
[36] in which an anomalous U(1) symmetry is introduced to ensure a complete cancellation 
between θQCD and θQFD. Another competitive strategy is to remove θQCD by imposing a spon-
taneously broken P or CP symmetry (e.g., in the LR symmetric model), and to keep the second 
term vanishing in the meantime [37,38].

Being Hermitian, the four-zero texture of quark mass matrices automatically satisfies the re-
quirement arg [Det (MuMd)] = 0 at a superhigh energy scale �FS. Nevertheless, the RGE effects 
can render Md(MZ) non-Hermitian as shown in Eq. (63). Since the strong CP term begins to take 
effect at the scale of about 260 MeV where the QCD vacuum transforms, nonzero arg [Det (Md)]
at or below MZ will contribute to θ in spite of arg [Det (Md)] = 0 at �FS. Given the explicit form 
of Mu(MZ) and Md(MZ) in Eq. (63), one may calculate its contribution to θ as follows:

θQFD = arg [DetMd(MZ)] � arctan

[
ρ−1 − 1

�1 + �2

�3Im(bd)

ad ρ−1

]
∼ (1 − r)2 (1 − ρ) sinφ2 . (79)

Although φ2 is very small, it cannot be exactly zero as shown in our numerical analysis. Given 
r = 0.9 and �FS = 1 TeV, for instance, Eq. (79) leads us to a value of O(10−5), much larger 
than the upper bound of θ . One way out of this problem is to fine-tune the value of r . But 
the possibility of r � 1 has phenomenologically been ruled out, as discussed at the beginning 
of Section 3. If the parallelism between the forms of Mu and Md is given up, the situation will 
change. For example, in a flavor basis with Mu being diagonal, the value of θQFD was estimated to 
be of O(10−16) in Ref. [39]. In short, it seems difficult to directly employ the four-zero texture of 
quark mass matrices to solve the strong CP problem in the scenario of spontaneous CP violation. 
But a more detailed study of this issue is needed before a firm conclusion can be achieved.

5. Summary

We have carried out a new study of the four-zero texture of Hermitian quark mass matrices and 
improved the previous works in several aspects. In our numerical analysis what really matters is 
that we have found a new part of the parameter space, corresponding to A ∼ |B| ∼ B̃ (or r ∼ 0.5), 
and confirmed the known part corresponding to A > |B| > B̃ (or r ∼ 1). In particular, the exact 
equality between A and B̃ is allowed, and this opens an interesting window for model building. 
We want to emphasize that the newly found parameter space is phenomenologically different 
from the already known: since the former allows the (near) equality of mass matrix entries — a 
characteristic of non-Abelian flavor symmetries which are very popular in the lepton sector [24], 
it provides a possibility of unifying the description of quarks and leptons with the same flavor 
symmetries and this will be discussed elsewhere.

We have identified two special four-zero patterns of quark mass matrices and constructed 
two toy flavor-symmetry models to realize them. One of the patterns possesses a mild hierarchy 
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A ∼ ε|B| ∼ ε2B̃ with ε being about 0.3, and it can be obtained with the help of the FN mech-
anism. The other pattern assumes A = B̃ , which can be realized by means of the S(3) flavor 
symmetry. Both of them show a similarity between the (2, 3) sectors of Mu and Md, indicating 
that the latter could have the same origin. We have done two model-building exercises in the 
SUSY LR framework with an explicit parity symmetry, which ensures the Hermiticity of quark 
mass matrices at the flavor symmetry scale �FS.

We have also studied the RGE effects on the four-zero texture of quark mass matrices in an 
analytical way, from �FS down to the electroweak scale MZ . Our results show that the texture 
zeros of Mu and Md are essentially stable against the evolution of energy scales, but their finite 
entries are rescaled due to the RGE-induced corrections. An interesting consequence of the RGE 
running is the loss of the Hermiticity of Md at MZ in the SM. As a byproduct, the possibility 
of applying the four-zero texture of quark mass matrices to resolving the strong CP problem has 
been discussed in a very brief way.

Although the predictive power of texture zeros has recently been questioned in the lepton 
sector [40], they remain useful in the quark sector to understand the correlation between the 
hierarchy of quark masses and that of flavor mixing angles. We remark that possible flavor sym-
metries are behind possible texture zeros, and they are phenomenologically important to probe 
the underlying flavor structure before a complete flavor theory is developed.

Note added. While our paper was being finished, we noticed a new preprint [41] in which a 
systematic survey of possible texture zeros of quark mass matrices was done but the four-zero 
texture of Hermitian quark mass matrices with the up–down parallelism was not explicitly dis-
cussed.
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