5 research outputs found

    Automated identification and quantification of myocardial inflammatory infiltration in digital histological images to diagnose myocarditis

    Full text link
    This study aims to develop a new computational pathology approach that automates the identification and quantification of myocardial inflammatory infiltration in digital HE-stained images to provide a quantitative histological diagnosis of myocarditis.898 HE-stained whole slide images (WSIs) of myocardium from 154 heart transplant patients diagnosed with myocarditis or dilated cardiomyopathy (DCM) were included in this study. An automated DL-based computational pathology approach was developed to identify nuclei and detect myocardial inflammatory infiltration, enabling the quantification of the lymphocyte nuclear density (LND) on myocardial WSIs. A cutoff value based on the quantification of LND was proposed to determine if the myocardial inflammatory infiltration was present. The performance of our approach was evaluated with a five-fold cross-validation experiment, tested with an internal test set from the myocarditis group, and confirmed by an external test from a double-blind trial group. An LND of 1.02/mm2 could distinguish WSIs with myocarditis from those without. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) in the five-fold cross-validation experiment were 0.899 plus or minus 0.035, 0.971 plus or minus 0.017, 0.728 plus or minus 0.073 and 0.849 plus or minus 0.044, respectively. For the internal test set, the accuracy, sensitivity, specificity, and AUC were 0.887, 0.971, 0.737, and 0.854, respectively. The accuracy, sensitivity, specificity, and AUC for the external test set reached 0.853, 0.846, 0.858, and 0.852, respectively. Our new approach provides accurate and reliable quantification of the LND of myocardial WSIs, facilitating automated quantitative diagnosis of myocarditis with HE-stained images.Comment: 21 pages,5 figures,6 Tables, 25 reference

    N-Acetylcysteine, an ROS Inhibitor, Alleviates the Pathophysiology of Hyperthyroidism-Induced Cardiomyopathy via the ROS/Ca<sup>2+</sup> Pathway

    No full text
    Hyperthyroidism is common and can induce cardiomyopathy, but there is no effective therapeutic strategy. The purpose of this study was to investigate the molecular mechanism of hyperthyroidism-induced cardiomyopathy (HTC) and the effect of N-acetylcysteine (NAC), an ROS inhibitor, on the pathophysiology of HTC in vivo and in vitro. Compared with those in the control groups in vivo and in vitro, TT3 and TT4 were significantly increased, the structure of myocardial cells was enlarged and disordered, and interstitial fibrosis and the apoptosis of myocardial cells were markedly increased in the L-Thy group. The ROS and inflammatory response were increased in the hyperthyroidism group. In the NAC group, the contents of TT3 and TT4 were decreased, the myocardial cell structure was slightly disturbed, fibrosis and apoptosis were significantly reduced, and the ROS level and inflammatory response were significantly reduced. Interestingly, L-Thy decreased the viability of fibroblasts and H9c2 cells, suggesting that L-Thy-induced fibrosis was not caused by the proliferation of fibroblasts. The molecular mechanism of HTC could be explained by the fact that L-Thy could cause cardiac hypertrophy, inflammation, and fibrosis by regulating the Ca2+/calpain/Rcan1-dependent signalling pathway, the Ca2+/Rcan1/NF-κB/p65-dependent signalling pathway, and the Ca2+/ROS/Bcl-2/caspase-3-dependent signalling pathway. In conclusion, NAC can alleviate the pathophysiology of hyperthyroidism-induced cardiomyopathy, probably by regulating the ROS/Ca2+-dependent pathway

    Inhibition of NETosis via PAD4 alleviated inflammation in giant cell myocarditis

    No full text
    Summary: Giant cell myocarditis (GCM) is a rare, usually rapidly progressive, and potentially fatal disease. Detailed inflammatory responses remain unknown, in particular the formation of multinucleate giant cells. We performed single-cell RNA sequencing analysis on 15,714 Cd45+ cells extracted from the hearts of GCM rats and normal rats. NETosis has been found to contribute to the GCM process. An inhibitor of NETosis, GSK484, alleviated GCM inflammation in vivo. MPO (a marker of neutrophils) and H3cit (a marker of NETosis) were expressed at higher levels in patients with GCM than in patients with DCM and healthy controls. Imaging mass cytometry analysis revealed that immune cell types within multinucleate giant cells included CD4+ T cells, CD8+ T cells, neutrophils, and macrophages but not B cells. We elucidated the role of NETosis in GCM pathogenesis, which may serve as a potential therapeutic target in the clinic

    Additional file 1 of Single-cell RNA sequencing in donor and end-stage heart failure patients identifies NLRP3 as a therapeutic target for arrhythmogenic right ventricular cardiomyopathy

    No full text
    Additional file 1: Table S1. Clinical information of ARVC patients based on Task Force Criteria in 2010. Table S2. Clinical characteristics of enrolled ARVC patients and normal controls. Table S3. Counts of different biotypes. Table S4. Cell types assignment by using SingleR and manual annotation. Table S5. Current list of GWAS cardiac arrhythmia genes. Table S6. The summary of major non-cardiomyocytes subpopulations in ARVC and normal human hearts
    corecore