580 research outputs found

    A Bayesian marked spatial point processes model for basketball shot chart

    Full text link
    The success rate of a basketball shot may be higher at locations where a player makes more shots. For a marked spatial point process, this means that the mark and the intensity are associated. We propose a Bayesian joint model for the mark and the intensity of marked point processes, where the intensity is incorporated in the mark model as a covariate. Inferences are done with a Markov chain Monte Carlo algorithm. Two Bayesian model comparison criteria, the Deviance Information Criterion and the Logarithm of the Pseudo-Marginal Likelihood, were used to assess the model. The performances of the proposed methods were examined in extensive simulation studies. The proposed methods were applied to the shot charts of four players (Curry, Harden, Durant, and James) in the 2017--2018 regular season of the National Basketball Association to analyze their shot intensity in the field and the field goal percentage in detail. Application to the top 50 most frequent shooters in the season suggests that the field goal percentage and the shot intensity are positively associated for a majority of the players. The fitted parameters were used as inputs in a secondary analysis to cluster the players into different groups

    Heterogeneity Pursuit for Spatial Point Pattern with Application to Tree Locations: A Bayesian Semiparametric Recourse

    Full text link
    Spatial point pattern data are routinely encountered. A flexible regression model for the underlying intensity is essential to characterizing the spatial point pattern and understanding the impacts of potential risk factors on such pattern. We propose a Bayesian semiparametric regression model where the observed spatial points follow a spatial Poisson process with an intensity function which adjusts a nonparametric baseline intensity with multiplicative covariate effects. The baseline intensity is piecewise constant, approached with a powered Chinese restaurant process prior which prevents an unnecessarily large number of pieces. The parametric regression part allows for variable selection through the spike-slab prior on the regression coefficients. An efficient Markov chain Monte Carlo (MCMC) algorithm is developed for the proposed methods. The performance of the methods is validated in an extensive simulation study. In application to the locations of Beilschmiedia pendula trees in the Barro Colorado Island forest dynamics research plot in central Panama, the spatial heterogeneity is attributed to a subset of soil measurements in addition to geographic measurements with a spatially varying baseline intensity.Comment: 21 pages, 7 figure

    Polyethylenimine-Enhanced Alumina Nanoscale Adjuvant for Cancer Vaccine

    Get PDF
    Aluminum oxide nanoparticles (Al2O3 NPs) have been shown to increase the efficiency of cell-mediated immune response. Specifically, CD8 and CD4 immune response is required for T cell activation by dendritic cells. These nanoparticles, when functionalized with peptides and other molecules, can be used as vaccine in cancer treatment. In this study, Al2O3 NPs were attached to E6/E7 proteins. HPV-induced cervical cancer expresses E6/E7 antigens. E6/E7 proteins were attached using surface modification of the Al2O3 NPs; different types of molecules were tested to see which adhered the highest amount of protein and produced the strongest cell response. Protein measurements were done using bicinchoninic acid assay (BCA assay) and spectrophotometry. CD8 and CD4 immune response was measured in vivo using flow cytometry. In vitro measurements of immune response were done using B3Z T cells. When coated on the nanoparticles and conjugated with E6E7 protein, the polymer polyethylenimine (PEI) proved to be most effective at strengthening the immune response in vaccinated mice. The NPs were characterized using transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). Our findings in this study demonstrate the growing importance of applied physics in the fields of medicine and biology. Fabrication and characterization of nano-materials are important for improving vaccine delivery and ensuring effectiveness

    Transduced PEP-1-Heme Oxygenase-1 Fusion Protein Attenuates Lung Injury in Septic Shock Rats

    Get PDF
    Oxidative stress and inflammation have been identified to play a vital role in the pathogenesis of lung injury induced by septic shock. Heme oxygenase-1 (HO-1), an effective antioxidant and anti-inflammatory and antiapoptotic substance, has been used for the treatment of heart, lung, and liver diseases. Thus, we postulated that administration of exogenous HO-1 protein transduced by cell-penetrating peptide PEP-1 has a protective role against septic shock-induced lung injury. Septic shock produced by cecal ligation and puncture caused severe lung damage, manifested in the increase in the lung wet/dry ratio, oxidative stress, inflammation, and apoptosis. However, these changes were reversed by treatment with the PEP-1-HO-1 fusion protein, whereas lung injury in septic shock rats was alleviated. Furthermore, the septic shock upregulated the expression of Toll-like receptor 4 (TLR4) and transcription factor NF-ΞΊB, accompanied by the increase of lung injury. Administration of PEP-1-HO-1 fusion protein reversed septic shock-induced lung injury by downregulating the expression of TLR4 and NF-ΞΊB. Our study indicates that treatment with HO-1 protein transduced by PEP-1 confers protection against septic shock-induced lung injury by its antioxidant, anti-inflammatory, and antiapoptotic effects

    Experimental Test of Tracking the King Problem

    Full text link
    In quantum theory, the retrodiction problem is not as clear as its classical counterpart because of the uncertainty principle of quantum mechanics. In classical physics, the measurement outcomes of the present state can be used directly for predicting the future events and inferring the past events which is known as retrodiction. However, as a probabilistic theory, quantum-mechanical retrodiction is a nontrivial problem that has been investigated for a long time, of which the Mean King Problem is one of the most extensively studied issues. Here, we present the first experimental test of a variant of the Mean King Problem, which has a more stringent regulation and is termed "Tracking the King". We demonstrate that Alice, by harnessing the shared entanglement and controlled-not gate, can successfully retrodict the choice of King's measurement without knowing any measurement outcome. Our results also provide a counterintuitive quantum communication to deliver information hidden in the choice of measurement.Comment: 16 pages, 5 figures, 2 table

    Molecular Basis of Efficient Replication and Pathogenicity of H9N2 Avian Influenza Viruses in Mice

    Get PDF
    H9N2 subtype avian influenza viruses (AIVs) have shown expanded host range and can infect mammals, such as humans and swine. To date the mechanisms of mammalian adaptation and interspecies transmission of H9N2 AIVs remain poorly understood. To explore the molecular basis determining mammalian adaptation of H9N2 AIVs, we compared two avian field H9N2 isolates in a mouse model: one (A/chicken/Guangdong/TS/2004, TS) is nonpathogenic, another one (A/chicken/Guangdong/V/2008, V) is lethal with efficient replication in mouse brains. In order to determine the basis of the differences in pathogenicity and brain tropism between these two viruses, recombinants with a single gene from the TS (or V) virus in the background of the V (or TS) virus were generated using reverse genetics and evaluated in a mouse model. The results showed that the PB2 gene is the major factor determining the virulence in the mouse model although other genes also have variable impacts on virus replication and pathogenicity. Further studies using PB2 chimeric viruses and mutated viruses with a single amino acid substitution at position 627 [glutamic acid (E) to lysine, (K)] in PB2 revealed that PB2 627K is critical for pathogenicity and viral replication of H9N2 viruses in mouse brains. All together, these results indicate that the PB2 gene and especially position 627 determine virus replication and pathogenicity in mice. This study provides insights into the molecular basis of mammalian adaptation and interspecies transmission of H9N2 AIVs
    • …
    corecore