1,434 research outputs found

    Relativistic treatment of harmonics from impurity systems in quantum wires

    Get PDF
    Within a one particle approximation of the Dirac equation we investigate a defect system in a quantum wire. We demonstrate that by minimally coupling a laser field of frequency omega to such an impurity system, one may generate harmonics of multiples of the driving frequency. In a multiple defect system one may employ the distance between the defects in order to tune the cut-off frequency.Comment: 9 pages Latex, 8 eps figures, section added, numerics improve

    Plane waves with negative phase velocity in Faraday chiral mediums

    Full text link
    The propagation of plane waves in a Faraday chiral medium is investigated. Conditions for the phase velocity to be directed opposite to the direction of power flow are derived for propagation in an arbitrary direction; simplified conditions which apply to propagation parallel to the distinguished axis are also established. These negative phase-velocity conditions are explored numerically using a representative Faraday chiral medium, arising from the homogenization of an isotropic chiral medium and a magnetically biased ferrite. It is demonstrated that the phase velocity may be directed opposite to power flow, provided that the gyrotropic parameter of the ferrite component medium is sufficiently large compared with the corresponding nongyrotropic permeability parameters.Comment: accepted for publication in Phys. Rev.

    Ball on a beam: stabilization under saturated input control with large basin of attraction

    Get PDF
    This article is devoted to the stabilization of two underactuated planar systems, the well-known straight beam-and-ball system and an original circular beam-and-ball system. The feedback control for each system is designed, using the Jordan form of its model, linearized near the unstable equilibrium. The limits on the voltage, fed to the motor, are taken into account explicitly. The straight beam-and-ball system has one unstable mode in the motion near the equilibrium point. The proposed control law ensures that the basin of attraction coincides with the controllability domain. The circular beam-and-ball system has two unstable modes near the equilibrium point. Therefore, this device, never considered in the past, is much more difficult to control than the straight beam-and-ball system. The main contribution is to propose a simple new control law, which ensures by adjusting its gain parameters that the basin of attraction arbitrarily can approach the controllability domain for the linear case. For both nonlinear systems, simulation results are presented to illustrate the efficiency of the designed nonlinear control laws and to determine the basin of attraction

    Excess energy of an ultracold Fermi gas in a trapped geometry

    Full text link
    We have analytically explored finite size and interparticle interaction corrections to the average energy of a harmonically trapped Fermi gas below and above the Fermi temperature, and have obtained a better fitting for the excess energy reported by DeMarco and Jin [Science 285\textbf{285}, 1703 (1999)]. We have presented a perturbative calculation within a mean field approximation.Comment: 8 pages, 4 figures; Accepted in European Physical Journal

    Adsorption-desorption kinetics in nanoscopically confined oligomer films under shear

    Get PDF
    The method of molecular dynamics computer simulations is employed to study oligomer melts confined in ultra-thin films and subjected to shear. The focus is on the self-diffusion of oligomers near attractive surfaces and on their desorption, together with the effects of increasing energy of adsorption and shear. It is found that the mobility of the oligomers near an attractive surface is strongly decreased. Moreover, although shearing the system forces the chains to stretch parallel to the surfaces and thus increase the energy of adsorption per chain, flow also promotes desorption. The study of chain desorption kinetics reveals the molecular processes responsible for the enhancement of desorption under shear. They involve sequences of conformations starting with a desorbed tail and proceeding in a very fast, correlated, segment-by-segment manner to the desorption of the oligomers from the surfaces.

    Multilayered feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India

    Full text link
    In the present research, possibility of predicting average summer-monsoon rainfall over India has been analyzed through Artificial Neural Network models. In formulating the Artificial Neural Network based predictive model, three layered networks have been constructed with sigmoid non-linearity. The models under study are different in the number of hidden neurons. After a thorough training and test procedure, neural net with three nodes in the hidden layer is found to be the best predictive model.Comment: 19 pages, 1 table, 3 figure

    Frictional drag between non-equilibrium charged gases

    Full text link
    The frictional drag force between separated but coupled two-dimensional electron gases of different temperatures is studied using the non-equilibrium Green function method based on the separation of center-of-mass and relative dynamics of electrons. As the mechanisms of producing the frictional force we include the direct Coulomb interaction, the interaction mediated via virtual and real TA and LA phonons, optic phonons, plasmons, and TA and LA phonon-electron collective modes. We found that, when the distance between the two electron gases is large, and at intermediate temperature where plasmons and collective modes play the most important role in the frictional drag, the possibility of having a temperature difference between two subsystems modifies greatly the transresistivity.Comment: 8figure

    Thermodynamic Measurements in a Strongly Interacting Fermi Gas

    Full text link
    We conduct a series of measurements on the thermodynamic properties of an optically-trapped strongly interacting Fermi gas, including the energy EE, entropy SS, and sound velocity cc. Our model-independent measurements of EE and SS enable a precision study of the finite temperature thermodynamics. The E(S)E(S) data are directly compared to several recent predictions. The temperature in both the superfluid and normal fluid regime is obtained from the fundamental thermodynamic relation T=E/ST=\partial E/\partial S by parameterizing the E(S)E(S) data. Our E(S)E(S) data are also used to experimentally calibrate the endpoint temperatures obtained for adiabatic sweeps of the magnetic field between the ideal and strongly interacting regimes. This enables the first experimental calibration of the temperature scale used in experiments on fermionic pair condensation. Our calibration shows that the ideal gas temperature measured for the onset of pair condensation corresponds closely to the critical temperature estimated in the strongly interacting regime from the fits to our E(S)E(S) data. The results are in very good agreement with recent predictions. Finally, using universal thermodynamic relations, we estimate the chemical potential and heat capacity of the trapped gas from the E(S)E(S) data.Comment: 29 pages, 12 figures. To appear in JLTP online, and in the January, 2009 volum

    Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding

    Full text link
    Within the broad class of multiferroics (compounds showing a coexistence of magnetism and ferroelectricity), we focus on the subclass of "improper electronic ferroelectrics", i.e. correlated materials where electronic degrees of freedom (such as spin, charge or orbital) drive ferroelectricity. In particular, in spin-induced ferroelectrics, there is not only a {\em coexistence} of the two intriguing magnetic and dipolar orders; rather, there is such an intimate link that one drives the other, suggesting a giant magnetoelectric coupling. Via first-principles approaches based on density functional theory, we review the microscopic mechanisms at the basis of multiferroicity in several compounds, ranging from transition metal oxides to organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic frameworks, MOFs)Comment: 22 pages, 9 figure
    corecore