1,709 research outputs found
Quantum phase transition in the Frenkel-Kontorova chain: from pinned instanton glass to sliding phonon gas
We study analytically and numerically the one-dimensional quantum
Frenkel-Kontorova chain in the regime when the classical model is located in
the pinned phase characterized by the gaped phonon excitations and devil's
staircase. By extensive quantum Monte Carlo simulations we show that for the
effective Planck constant smaller than the critical value the
quantum chain is in the pinned instanton glass phase. In this phase the
elementary excitations have two branches: phonons, separated from zero energy
by a finite gap, and instantons which have an exponentially small excitation
energy. At the quantum phase transition takes place and for
the pinned instanton glass is transformed into the sliding
phonon gas with gapless phonon excitations. This transition is accompanied by
the divergence of the spatial correlation length and appearence of sliding
modes at .Comment: revtex 16 pages, 18 figure
Theory of nuclear induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots
We propose a model for spectral diffusion of localized spins in
semiconductors due to the dipolar fluctuations of lattice nuclear spins. Each
nuclear spin flip-flop is assumed to be independent, the rate for this process
being calculated by a method of moments. Our calculated spin decoherence time
ms for donor electron spins in Si:P is a factor of two longer than
spin echo decay measurements. For P nuclear spins we show that spectral
diffusion is well into the motional narrowing regime. The calculation for GaAs
quantum dots gives s depending on the quantum dot size. Our
theory indicates that nuclear induced spectral diffusion should not be a
serious problem in developing spin-based semiconductor quantum computer
architectures.Comment: 15 pages, 9 figures. Accepted for publication in Phys. Rev.
Oscillations of a solid sphere falling through a wormlike micellar fluid
We present an experimental study of the motion of a solid sphere falling
through a wormlike micellar fluid. While smaller or lighter spheres quickly
reach a terminal velocity, larger or heavier spheres are found to oscillate in
the direction of their falling motion. The onset of this instability correlates
with a critical value of the velocity gradient scale
s. We relate this condition to the known complex rheology of wormlike
micellar fluids, and suggest that the unsteady motion of the sphere is caused
by the formation and breaking of flow-induced structures.Comment: 4 pages, 4 figure
The Tensor to Scalar Ratio of Phantom Dark Energy Models
We investigate the anisotropies in the cosmic microwave background in a class
of models which possess a positive cosmic energy density but negative pressure,
with a constant equation of state w = p/rho < -1. We calculate the temperature
and polarization anisotropy spectra for both scalar and tensor perturbations by
modifying the publicly available code CMBfast. For a constant initial curvature
perturbation or tensor normalization, we have calculated the final anisotropy
spectra as a function of the dark energy density and equation of state w and of
the scalar and tensor spectral indices. This allows us to calculate the
dependence of the tensor-to-scalar ratio on w in a model with phantom dark
energy, which may be important for interpreting any future detection of
long-wavelength gravitational waves.Comment: 5 pages, 4 figure
State transfer in dissipative and dephasing environments
By diagonalization of a generalized superoperator for solving the master
equation, we investigated effects of dissipative and dephasing environments on
quantum state transfer, as well as entanglement distribution and creation in
spin networks. Our results revealed that under the condition of the same
decoherence rate , the detrimental effects of the dissipative
environment are more severe than that of the dephasing environment. Beside
this, the critical time at which the transfer fidelity and the
concurrence attain their maxima arrives at the asymptotic value
quickly as the spin chain length increases. The transfer
fidelity of an excitation at time is independent of when the system
subjects to dissipative environment, while it decreases as increases when
the system subjects to dephasing environment. The average fidelity displays
three different patterns corresponding to , and . For
each pattern, the average fidelity at time is independent of when the
system subjects to dissipative environment, and decreases as increases when
the system subjects to dephasing environment. The maximum concurrence also
decreases as increases, and when , it arrives at an
asymptotic value determined by the decoherence rate and the structure
of the spin network.Comment: 12 pages, 6 figure
Spin-orbit coupling and intrinsic spin mixing in quantum dots
Spin-orbit coupling effects are studied in quantum dots in InSb, a narrow-gap
material. Competition between different Rashba and Dresselhaus terms is shown
to produce wholesale changes in the spectrum. The large (and negative)
-factor and the Rashba field produce states where spin is no longer a good
quantum number and intrinsic flips occur at moderate magnetic fields. For dots
with two electrons, a singlet-triplet mixing occurs in the ground state, with
observable signatures in intraband FIR absorption, and possible importance in
quantum computation.Comment: REVTEX4 text with 3 figures (high resolution figs available by
request). Submitted to PR
Bound state spectra of three-body muonic molecular ions
The results of highly accurate calculations are presented for all twenty-two
known bound and states in the six
three-body muonic molecular ions and
. A number of bound state properties of these muonic molecular ions have
been determined numerically to high accuracy. The dependence of the total
energies of these muonic molecules upon particle masses is considered. We also
discuss the current status of muon-catalysis of nuclear fusion reactions.Comment: This is the final version. All `techical' troubles with the
Latex-file have been resolved. A few misprints/mistakes in the text were
correcte
Is the Universe Inflating? Dark Energy and the Future of the Universe
We consider the fate of the observable universe in the light of the discovery
of a dark energy component to the cosmic energy budget. We extend results for a
cosmological constant to a general dark energy component and examine the
constraints on phenomena that may prevent the eternal acceleration of our patch
of the universe. We find that the period of accelerated cosmic expansion has
not lasted long enough for observations to confirm that we are undergoing
inflation; such an observation will be possible when the dark energy density
has risen to between 90% and 95% of the critical. The best we can do is make
cosmological observations in order to verify the continued presence of dark
energy to some high redshift. Having done that, the only possibility that could
spoil the conclusion that we are inflating would be the existence of a
disturbance (the surface of a true vacuum bubble, for example) that is moving
toward us with sufficiently high velocity, but is too far away to be currently
observable. Such a disturbance would have to move toward us with speed greater
than about 0.8c in order to spoil the late-time inflation of our patch of the
universe and yet avoid being detectable.Comment: 7 pages, 7 figure
The Primordial Gravitational Wave Background in String Cosmology
We find the spectrum P(w)dw of the gravitational wave background produced in
the early universe in string theory. We work in the framework of String Driven
Cosmology, whose scale factors are computed with the low-energy effective
string equations as well as selfconsistent solutions of General Relativity with
a gas of strings as source. The scale factor evolution is described by an early
string driven inflationary stage with an instantaneous transition to a
radiation dominated stage and successive matter dominated stage. This is an
expanding string cosmology always running on positive proper cosmic time. A
careful treatment of the scale factor evolution and involved transitions is
made. A full prediction on the power spectrum of gravitational waves without
any free-parameters is given. We study and show explicitly the effect of the
dilaton field, characteristic to this kind of cosmologies. We compute the
spectrum for the same evolution description with three differents approachs.
Some features of gravitational wave spectra, as peaks and asymptotic
behaviours, are found direct consequences of the dilaton involved and not only
of the scale factor evolution. A comparative analysis of different treatments,
solutions and compatibility with observational bounds or detection perspectives
is made.Comment: LaTeX, 50 pages with 2 figures. Uses epsfig and psfra
Multipartite entangled states in coupled quantum dots and cavity-QED
We investigate the generation of multipartite entangled state in a system of
N quantum dots embedded in a microcavity and examine the emergence of genuine
multipartite entanglement by three different characterizations of entanglement.
At certain times of dynamical evolution one can generate multipartite entangled
coherent exciton states or multiqubit states by initially preparing the
cavity field in a superposition of coherent states or the Fock state with one
photon, respectively. Finally we study environmental effects on multipartite
entanglement generation and find that the decay rate for the entanglement is
proportional to the number of excitons.Comment: 9 pages, 4 figures, to appear in Phys. Rev.
- âŠ