3,498 research outputs found
Breakdown of the interlayer coherence in twisted bilayer graphene
Coherent motion of the electrons in the Bloch states is one of the
fundamental concepts of the charge conduction in solid state physics. In
layered materials, however, such a condition often breaks down for the
interlayer conduction, when the interlayer coupling is significantly reduced by
e.g. large interlayer separation. We report that complete suppression of
coherent conduction is realized even in an atomic length scale of layer
separation in twisted bilayer graphene. The interlayer resistivity of twisted
bilayer graphene is much higher than the c-axis resistivity of Bernal-stacked
graphite, and exhibits strong dependence on temperature as well as on external
electric fields. These results suggest that the graphene layers are
significantly decoupled by rotation and incoherent conduction is a main
transport channel between the layers of twisted bilayer graphene.Comment: 5 pages, 3 figure
Signaling through Lrg1, Rho1 and Pkc1 Governs Candida albicans Morphogenesis in Response to Diverse Cues
The capacity to transition between distinct morphological forms is a key virulence trait for diverse fungal pathogens. A poignant example of a leading opportunistic fungal pathogen of humans for which an environmentally responsive developmental program underpins virulence is Candida albicans. C. albicans mutants that are defective in the transition between yeast and filamentous forms typically have reduced virulence. Although many positive regulators of C. albicans filamentation have been defined, there are fewer negative regulators that have been implicated in repression of filamentation in the absence of inducing cues. To discover novel negative regulators of filamentation, we screened a collection of 1,248 C. albicans homozygous transposon insertion mutants to identify those that were filamentous in the absence of inducing cues. We identified the Rho1 GAP Lrg1, which represses filamentous growth by stimulating Rho1 GTPase activity and converting Rho1 to its inactive, GDP-bound form. Deletion of LRG1or introduction of a RHO1 mutation that locks Rho1 in constitutively active, GTP-bound state, leads to filamentation in the absence of inducing cues. Deletion of the Rho1 downstream effector PKC1 results in defective filamentation in response to diverse host-relevant inducing cues, including serum. We further established that Pkc1 is not required to sense filament-inducing cues, but its kinase activity is critical for the initiation of filamentous growth. Our genetic analyses revealed that Pkc1 regulates filamentation independent of the canonical MAP kinase cascade. Further, although Ras1 activation is not impaired in a pkc1Δ/pkc1Δ mutant, adenylyl cyclase activity is reduced, consistent with a model in which Pkc1 functions in parallel with Ras1 in regulating Cyr1 activation. Thus, our findings delineate a signaling pathway comprised of Lrg1, Rho1 and Pkc1 with a core role in C. albicans morphogenesis, and illuminate functional relationships that govern activation of a central transducer of signals that control environmental response and virulence programs
Autonomous stochastic resonance in fully frustrated Josephson-junction ladders
We investigate autonomous stochastic resonance in fully frustrated
Josephson-junction ladders, which are driven by uniform constant currents. At
zero temperature large currents induce oscillations between the two ground
states, while for small currents the lattice potential forces the system to
remain in one of the two states. At finite temperatures, on the other hand,
oscillations between the two states develop even below the critical current;
the signal-to-noise ratio is found to display array-enhanced stochastic
resonance. It is suggested that such behavior may be observed experimentally
through the measurement of the staggered voltage.Comment: 6 pages, 11 figures, to be published in Phys. Rev.
Quantifying the Low Bias of CALIPSO's Column Aerosol Optical Depth Due to Undetected Aerosol Layers
The CALIOP data processing scheme only retrieves extinction profiles in those portions of the return signal where cloud or aerosol layers have been identified by the CALIOP layer detection scheme. In this study we use two years of CALIOP and MODIS data to quantify the aerosol optical depth of undetected weakly backscattering layers. Aerosol extinction and column-averaged lidar ratio is retrieved from CALIOP Level 1B (Version 4) profile using MODIS AOD as a constraint over oceans from March 2013 to February 2015. To quantify the undetected layer AOD (ULA), an unconstrained retrieval is applied globally using a lidar ratio of 28.75 sr estimated from constrained retrievals during the daytime over the ocean. We find a global mean ULA of 0.031 0.052. There is no significant difference in ULA between land and ocean. However, the fraction of undetected aerosol layers rises considerably during daytime, when the large amount of solar background noise lowers the signal to noise ratio (SNR). For this reason, there is a difference in ULA between day (0.036 0.066) and night (0.025 0.021). ULA is larger in the northern hemisphere and relatively larger at high latitudes. Large ULA for the Polar Regions is strongly related to the cases where the CALIOP Level 2 Product reports zero AOD. This study provides an estimate of the complement of AOD that is not detected by lidar, and bounds the CALIOP AOD uncertainty to provide corrections for science studies that employ the CALIOP Level 2 AOD
Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films
We present a flexible room temperature NO2 gas sensor consisting of vertical carbon nanotubes (CNTs)/reduced graphene hybrid film supported by a polyimide substrate. The reduced graphene film alone showed a negligible sensor response, exhibiting abnormal N-P transitions during the initial NO2 injection. A hybrid film, formed by the growth of a vertically aligned CNT array (with CNTs 20 ??m in length) on the reduced graphene film surface, exhibited remarkably enhanced sensitivities with weak N-P transitions. The increase in sensitivity was mainly attributed to the high sensitivity of the CNT arrays. The outstanding flexibility of the reduced graphene films ensured stable sensing performances in devices submitted to extreme bending stress.open786
Suppressing spatio-temporal lasing instabilities with wave-chaotic microcavities
Spatio-temporal instabilities are widespread phenomena resulting from
complexity and nonlinearity. In broad-area edge-emitting semiconductor lasers,
the nonlinear interactions of multiple spatial modes with the active medium can
result in filamentation and spatio-temporal chaos. These instabilities degrade
the laser performance and are extremely challenging to control. We demonstrate
a powerful approach to suppress spatio-temporal instabilities using
wave-chaotic or disordered cavities. The interference of many propagating waves
with random phases in such cavities disrupts the formation of self-organized
structures like filaments, resulting in stable lasing dynamics. Our method
provides a general and robust scheme to prevent the formation and growth of
nonlinear instabilities for a large variety of high-power lasers
- …