72 research outputs found

    CurriculumLoc: Enhancing Cross-Domain Geolocalization through Multi-Stage Refinement

    Full text link
    Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images, taken at some unknown location, to a set of geo-tagged reference images. Existing methods, devoted to semantic features representation, evolving towards robustness to a wide variety between query and reference, including illumination and viewpoint changes, as well as scale and seasonal variations. However, practical visual geolocalization approaches need to be robust in appearance changing and extreme viewpoint variation conditions, while providing accurate global location estimates. Therefore, inspired by curriculum design, human learn general knowledge first and then delve into professional expertise. We first recognize semantic scene and then measure geometric structure. Our approach, termed CurriculumLoc, involves a delicate design of multi-stage refinement pipeline and a novel keypoint detection and description with global semantic awareness and local geometric verification. We rerank candidates and solve a particular cross-domain perspective-n-point (PnP) problem based on these keypoints and corresponding descriptors, position refinement occurs incrementally. The extensive experimental results on our collected dataset, TerraTrack and a benchmark dataset, ALTO, demonstrate that our approach results in the aforementioned desirable characteristics of a practical visual geolocalization solution. Additionally, we achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively. Dataset, code and trained models are publicly available on https://github.com/npupilab/CurriculumLoc.Comment: 14 pages, 15 figure

    Adapting a Language Model While Preserving its General Knowledge

    Full text link
    Domain-adaptive pre-training (or DA-training for short), also known as post-training, aims to train a pre-trained general-purpose language model (LM) using an unlabeled corpus of a particular domain to adapt the LM so that end-tasks in the domain can give improved performances. However, existing DA-training methods are in some sense blind as they do not explicitly identify what knowledge in the LM should be preserved and what should be changed by the domain corpus. This paper shows that the existing methods are suboptimal and proposes a novel method to perform a more informed adaptation of the knowledge in the LM by (1) soft-masking the attention heads based on their importance to best preserve the general knowledge in the LM and (2) contrasting the representations of the general and the full (both general and domain knowledge) to learn an integrated representation with both general and domain-specific knowledge. Experimental results will demonstrate the effectiveness of the proposed approach.Comment: EMNLP 202

    mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with Modality Collaboration

    Full text link
    Multi-modal Large Language Models (MLLMs) have demonstrated impressive instruction abilities across various open-ended tasks. However, previous methods primarily focus on enhancing multi-modal capabilities. In this work, we introduce a versatile multi-modal large language model, mPLUG-Owl2, which effectively leverages modality collaboration to improve performance in both text and multi-modal tasks. mPLUG-Owl2 utilizes a modularized network design, with the language decoder acting as a universal interface for managing different modalities. Specifically, mPLUG-Owl2 incorporates shared functional modules to facilitate modality collaboration and introduces a modality-adaptive module that preserves modality-specific features. Extensive experiments reveal that mPLUG-Owl2 is capable of generalizing both text tasks and multi-modal tasks and achieving state-of-the-art performances with a single generic model. Notably, mPLUG-Owl2 is the first MLLM model that demonstrates the modality collaboration phenomenon in both pure-text and multi-modal scenarios, setting a pioneering path in the development of future multi-modal foundation models

    Relative increases in CH4 and CO2 emissions from wetlands under global warming dependent on soil carbon substrates

    Get PDF
    15 páginas.- 3 figuras.- 57 referencias.- Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41561-023-01345-6Compelling evidence has shown that wetland methane emissions are more temperature dependent than carbon dioxide emissions across diverse hydrologic conditions. However, the availability of carbon substrates, which ultimately determines microbial carbon metabolism, has not been adequately accounted for. By combining a global database and a continental-scale experimental study, we showed that differences in the temperature dependence of global wetland methane and carbon dioxide emissions (EM/C) were dependent on soil carbon-to-nitrogen stoichiometry. This can be explained mainly by the positive relationship between soil organic matter decomposability and EM/C. Our study indicates that only 23% of global wetlands will decrease methane relative to carbon dioxide emissions under future warming scenarios when soil organic matter decomposability is considered. Our findings highlight the importance of incorporating soil organic matter biodegradability into model predictions of wetland carbon–climate feedback.The authors received funding from Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28030102 to Y.L.), National Natural Scientific Foundation of China (92251305 to M.N., 41622104 to Y.L.), Innovation Program of the Institute of Soil Science (ISSASIP2201 to Y.L.) and Youth Innovation Promotion Association of the Chinese Academy of Sciences (2016284 to Y.L.).Peer reviewe

    Heat Absorption and Release Characteristics on Heat Storage Walls with Different Materials

    No full text
    To analyze the storage performance of the envelope structure, based on the law of conservation of energy, the ANSYS software was employed to perform thermal analysis on three conventional wall materials and phase change materials, and the temperature fields and minimum temperature difference of the walls with different materials were obtained. The heat absorption and release characteristics of different wall materials were studied. Comparing the heat absorption and release characteristics of phase change materials, it was concluded that the phase change materials had better heat storage capacity, which provided a basis for promoting and developing low energy consumption technologies for buildings

    Analysis and Discussion on the Design of Green Super High-rise Civil Buildings in Huangshan

    No full text
    With the accelerating urbanization process and the development of the construction industry, the role of green building design in architectural design is constantly reflected. The comprehensive implementation of green building is an important measure to promote China's energy-saving emission reduction and low-carbon city strategy. However, there are relatively few cases in which green building design is applied to super high-rise civil buildings, and in-depth research and data analysis must be carried out. The design points in green super high-rise civil buildings in Huangshan area were briefly summarized, and the actual cases of a green super high-rise civil building design in Huangshan City were analyzed, which is conducive to laying the foundation for the application of green building design to super high-rise civil buildings
    corecore