90,160 research outputs found

    Heisenberg equation for a nonrelativistic particle on a hypersurface: from the centripetal force to a curvature induced force

    Full text link
    In classical mechanics, a nonrelativistic particle constrained on an N−1N-1 curved hypersurface embedded in NN flat space experiences the centripetal force only. In quantum mechanics, the situation is totally different for the presence of the geometric potential. We demonstrate that the motion of the quantum particle is "driven" by not only the the centripetal force, but also a curvature induced force proportional to the Laplacian of the mean curvature, which is fundamental in the interface physics, causing curvature driven interface evolution.Comment: 4 page

    The centripetal force law and the equation of motion for a particle on a curved hypersurface

    Get PDF
    It is pointed out that the current form of extrinsic equation of motion for a particle constrained to remain on a hypersurface is in fact a half-finished version for it is established without regard to the fact that the particle can never depart from the geodesics on the surface. Once the fact be taken into consideration, the equation takes that same form as that for centripetal force law, provided that the symbols are re-interpreted so that the law is applicable for higher dimensions. The controversial issue of constructing operator forms of these equations is addressed, and our studies show the quantization of constrained system based on the extrinsic equation of motion is favorable.Comment: 5 pages, major revisio

    Insulating state and the importance of the spin-orbit coupling in Ca3_3CoRhO6_6

    Full text link
    We have carried out a comparative theoretical study of the electronic structure of the novel one-dimensional Ca3_3CoRhO6_6 and Ca3_3FeRhO6_6 systems. The insulating antiferromagnetic state for the Ca3_3FeRhO6_6 can be well explained by band structure calculations with the closed shell high-spin d5d^5 (Fe3+^{3+}) and low-spin t2g6t_{2g}^{6} (Rh3+^{3+}) configurations. We found for the Ca3_3CoRhO6_6 that the Co has a strong tendency to be d7d^7 (Co2+^{2+}) rather than d6d^6 (Co3+^{3+}), and that there is an orbital degeneracy in the local Co electronic structure. We argue that it is the spin-orbit coupling which will lift this degeneracy thereby enabling local spin density approximation + Hubbard U (LSDA+U) band structure calculations to generate the band gap. We predict that the orbital contribution to the magnetic moment in Ca3_3CoRhO6_6 is substantial, i.e. significantly larger than 1 μB\mu_B per formula unit. Moreover, we propose a model for the contrasting intra-chain magnetism in both materials.Comment: 7 pages, 4 figures, and 1 tabl

    Response of YBCO/PCBO/YBCO ramp type Josephson junctions to near MM wave irradiation

    Get PDF
    A high Tc Josephson device for high frequency detection applications is being developed, consisting of an YBCO/PBCO/YBCO ramp type junction and a broad band log-periodic antenna. In this contribution we present the response of such a device to (near) mm wave irradiation. Shapiro steps have been observed up to very high voltage values - nearly 4 mV at 10 K, at the maximum of the radiation power. The modulation of the step amplitudes shows very good resemblence with the predictions from the Resistively Shunted Junction model

    Mean-field study of itinerant ferromagnetism in trapped ultracold Fermi gases: Beyond the local density approximation

    Full text link
    We theoretically investigate the itinerant ferromagnetic transition of a spherically trapped ultracold Fermi gas with spin imbalance under strongly repulsive interatomic interactions. Our study is based on a self-consistent solution of the Hartree-Fock mean-field equations beyond the widely used local density approximation. We demonstrate that, while the local density approximation holds in the paramagnetic phase, after the ferromagnetic transition it leads to a quantitative discrepancy in various thermodynamic quantities even with large atom numbers. We determine the position of the phase transition by monitoring the shape change of the free energy curve with increasing the polarization at various interaction strengths.Comment: 7 pages, 5 figures; published version in Phys. Rev.

    Mapping functions and critical behavior of percolation on rectangular domains

    Full text link
    The existence probability EpE_p and the percolation probability PP of the bond percolation on rectangular domains with different aspect ratios RR are studied via the mapping functions between systems with different aspect ratios. The superscaling behavior of EpE_p and PP for such systems with exponents aa and bb, respectively, found by Watanabe, Yukawa, Ito, and Hu in [Phys. Rev. Lett. \textbf{93}, 190601 (2004)] can be understood from the lower order approximation of the mapping functions fRf_R and gRg_R for EpE_p and PP, respectively; the exponents aa and bb can be obtained from numerically determined mapping functions fRf_R and gRg_R, respectively.Comment: 17 pages with 6 figure

    Universal Quantum Degeneracy Point for Superconducting Qubits

    Full text link
    The quantum degeneracy point approach [D. Vion et al., Science 296, 886 (2002)] effectively protects superconducting qubits from low-frequency noise that couples with the qubits as transverse noise. However, low-frequency noise in superconducting qubits can originate from various mechanisms and can couple with the qubits either as transverse or as longitudinal noise. Here, we present a quantum circuit containing a universal quantum degeneracy point that protects an encoded qubit from arbitrary low-frequency noise. We further show that universal quantum logic gates can be performed on the encoded qubit with high gate fidelity. The proposed scheme is robust against small parameter spreads due to fabrication errors in the superconducting qubits.Comment: 7 pages, 4 figure

    Quantum Field Effects on Cosmological Phase Transition in Anisotropic Spacetimes

    Full text link
    The one-loop renormalized effective potentials for the massive Ï•4\phi^4 theory on the spatially homogeneous models of Bianchi type I and Kantowski-Sachs type are evaluated. It is used to see how the quantum field affects the cosmological phase transition in the anisotropic spacetimes. For reasons of the mathematical technique it is assumed that the spacetimes are slowly varying or have specially metric forms. We obtain the analytic results and present detailed discussions about the quantum field corrections to the symmetry breaking or symmetry restoration in the model spacetimes.Comment: Latex 17 page
    • …
    corecore