6,405 research outputs found

    The effect of cigarette price increase on the cigarette consumption in Taiwan: evidence from the National Health Interview Surveys on cigarette consumption

    Get PDF
    BACKGROUND: This study uses cigarette price elasticity to evaluate the effect of a new excise tax increase on cigarette consumption and to investigate responses from various types of smokers. METHODS: Our sample consisted of current smokers between 17 and 69 years old interviewed during an annual face-to-face survey conducted by Taiwan National Health Research Institutes between 2000 to 2003. We used Ordinary Least Squares (OLS) procedure to estimate double logarithmic function of cigarette demand and cigarette price elasticity. RESULTS: In 2002, after Taiwan had enacted the new tax scheme, cigarette price elasticity in Taiwan was found to be -0.5274. The new tax scheme brought about an average annual 13.27 packs/person (10.5%) reduction in cigarette consumption. Using the cigarette price elasticity estimate from -0.309 in 2003, we calculated that if the Health and Welfare Tax were increased by another NT$ 3 per pack and cigarette producers shifted this increase to the consumers, cigarette consumption would be reduced by 2.47 packs/person (2.2%). The value of the estimated cigarette price elasticity is smaller than one, meaning that the tax will not only reduce cigarette consumption but it will also generate additional tax revenues. Male smokers who had no income or who smoked light cigarettes were found to be more responsive to changes in cigarette price. CONCLUSIONS: An additional tax added to the cost of cigarettes would bring about a reduction in cigarette consumption and increased tax revenues. It would also help reduce incidents smoking-related illnesses. The additional tax revenues generated by the tax increase could be used to offset the current financial deficiency of Taiwan's National Health Insurance program and provide better public services

    Soliton pair creation in classical wave scattering

    Full text link
    We study classical production of soliton-antisoliton pairs from colliding wave packets in (1+1)-dimensional scalar field model. Wave packets represent multiparticle states in quantum theory; we characterize them by energy E and particle number N. Sampling stochastically over the forms of wave packets, we find the entire region in (E,N) plane which corresponds to classical creation of soliton pairs. Particle number is parametrically large within this region meaning that the probability of soliton-antisoliton pair production in few-particle collisions is exponentially suppressed.Comment: 16 pages, 8 figures, journal version; misprint correcte

    Phase control during the synthesis of nickel sulfide nanoparticles from dithiocarbamate precursors

    Get PDF
    Square-planar nickel bis(dithiocarbamate) complexes, [Ni(S2CNR2)2], have been prepared and utilised as single source precursors to nanoparticulate nickel sulfides. While they are stable in the solid-state to around 300 °C, heating in oleylamine at 230 °C, 5 mM solutions afford pure α-NiS, where the outcome is independent of the substituents. DFT calculations show an electronic effect rather than steric hindrance influences the resulting particle size. Decomposition of the iso-butyl derivative, [Ni(S2CN(i)Bu2)2], has been studied in detail. There is a temperature-dependence of the phase of the nickel sulfide formed. At low temperatures (150 °C), pure α-NiS is formed. Upon raising the temperature, increasing amounts of β-NiS are produced and at 280 °C this is formed in pure form. A range of concentrations (from 5-50 mM) was also investigated at 180 °C and while in all cases pure α-NiS was formed, particle sizes varied significantly. Thus at low concentrations average particle sizes were ca. 100 nm, but at higher concentrations they increased to ca. 150 nm. The addition of two equivalents of tetra-iso-butyl thiuram disulfide, ((i)Bu2NCS2)2, to the decomposition mixture was found to influence the material formed. At 230 °C and above, α-NiS was generated, in contrast to the results found without added thiuram disulfide, suggesting that addition of ((i)Bu2NCS2)2 stabilises the metastable α-NiS phase. At low temperatures (150-180 °C) and concentrations (5 mM), mixtures of α-NiS and Ni3S4, result. A growing proportion of Ni3S4 is noted upon increasing precursor concentration to 10 mM. At 20 mM a metastable phase of nickel sulfide, NiS2 is formed and as the concentration is increased, α-NiS appears alongside NiS2. Reasons for these variations are discussed

    Charge current in ferromagnet-superconductor junction with pairing state of broken time-reversal symmetry

    Full text link
    We calculate the tunneling conductance spectra of a ferromagnetic metal/insulator/superconductor using the Blonder-Tinkham-Klapwijk (BTK) formulation. Two possible states for the superconductor are considered with the time reversal symmetry (T\cal{T}) broken, i.e., dx2y2+isd_{x^2-y^2}+is, or dx2y2+idxyd_{x^2-y^2}+id_{xy}. In both cases the tunneling conductance within the gap is suppressed with the increase of the exchange interaction due to the suppression of the Andreev reflection. In the (dx2y2+is)(d_{x^2-y^2}+is)-wave case the peaks that exist when the ferromagnet is a normal metal in the amplitude of the s-wave component due to the bound state formation are reduced symmetrically, with the increase of the exchange field, while in the (dx2y2+idxy)(d_{x^2-y^2}+id_{xy})-wave case the residual density of states within the gap develops a dip around E=0 with the increase of the exchange field. These results would be useful to discriminate between T\cal{T}-broken pairing states near the surface in high-TcT_c superconductorsComment: 17 pages with 11 figure

    Vortex deformation and breaking in superconductors: A microscopic description

    Full text link
    Vortex breaking has been traditionally studied for nonuniform critical current densities, although it may also appear due to nonuniform pinning force distributions. In this article we study the case of a high-pinning/low-pinning/high-pinning layered structure. We have developed an elastic model for describing the deformation of a vortex in these systems in the presence of a uniform transport current density JJ for any arbitrary orientation of the transport current and the magnetic field. If JJ is above a certain critical value, JcJ_c, the vortex breaks and a finite effective resistance appears. Our model can be applied to some experimental configurations where vortex breaking naturally exists. This is the case for YBa2_2Cu3_3O7x_{7-x} (YBCO) low angle grain boundaries and films on vicinal substrates, where the breaking is experienced by Abrikosov-Josephson vortices (AJV) and Josephson string vortices (SV), respectively. With our model, we have experimentally extracted some intrinsic parameters of the AJV and SV, such as the line tension ϵl\epsilon_l and compared it to existing predictions based on the vortex structure.Comment: 11 figures in 13 files; minor changes after printing proof

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio

    Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene

    Full text link
    The quantum-Hall-effect (QHE) occurs in topologically-ordered states of two-dimensional (2d) electron-systems in which an insulating bulk-state coexists with protected 1d conducting edge-states. Owing to a unique topologically imposed edge-bulk correspondence these edge-states are endowed with universal properties such as fractionally-charged quasiparticles and interference-patterns, which make them indispensable components for QH-based quantum-computation and other applications. The precise edge-bulk correspondence, conjectured theoretically in the limit of sharp edges, is difficult to realize in conventional semiconductor-based electron systems where soft boundaries lead to edge-state reconstruction. Using scanning-tunneling microscopy and spectroscopy to follow the spatial evolution of bulk Landau-levels towards a zigzag edge of graphene supported above a graphite substrate we demonstrate that in this system it is possible to realize atomically sharp edges with no edge-state reconstruction. Our results single out graphene as a system where the edge-state structure can be controlled and the universal properties directly probed.Comment: 16 pages, 4 figure

    Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice

    Get PDF
    The spread of the SARS-CoV-2 into a global pandemic within a few months of onset motivates the development of a rapidly scalable vaccine. Here, we present a self-amplifying RNA encoding the SARS-CoV-2 spike protein encapsulated within a lipid nanoparticle (LNP) as a vaccine. We observe remarkably high and dose-dependent SARS-CoV-2 specific antibody titers in mouse sera, as well as robust neutralization of both a pseudo-virus and wild-type virus. Upon further characterization we find that the neutralization is proportional to the quantity of specific IgG and of higher magnitude than recovered COVID-19 patients. saRNA LNP immunizations induce a Th1-biased response in mice, and there is no antibody-dependent enhancement (ADE) observed. Finally, we observe high cellular responses, as characterized by IFN-γ production, upon re-stimulation with SARS-CoV-2 peptides. These data provide insight into the vaccine design and evaluation of immunogenicity to enable rapid translation to the clinic

    Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets

    Get PDF
    COVID-19 has demonstrated the power of RNA vaccines as part of a pandemic response toolkit. Another virus with pandemic potential is influenza. Further development of RNA vaccines in advance of a future influenza pandemic will save time and lives. As RNA vaccines require formulation to enter cells and induce antigen expression, the aim of this study was to investigate the impact of a recently developed bioreducible cationic polymer, pABOL for the delivery of a self-amplifying RNA (saRNA) vaccine for seasonal influenza virus in mice and ferrets. Mice and ferrets were immunized with pABOL formulated saRNA vaccines expressing either haemagglutinin (HA) from H1N1 or H3N2 influenza virus in a prime boost regime. Antibody responses, both binding and functional were measured in serum after immunization. Animals were then challenged with a matched influenza virus either directly by intranasal inoculation or in a contact transmission model. While highly immunogenic in mice, pABOL-formulated saRNA led to variable responses in ferrets. Animals that responded to the vaccine with higher levels of influenza virus-specific neutralizing antibodies were more protected against influenza virus infection. pABOL-formulated saRNA is immunogenic in ferrets, but further optimization of RNA vaccine formulation and constructs is required to increase the quality and quantity of the antibody response to the vaccine
    corecore