76,189 research outputs found
An Efficient Method for GPS Multipath Mitigation Using the Teager-Kaiser-Operator-based MEDLL
An efficient method for GPS multipath mitigation is proposed. The motivation for this proposed method is to integrate the Teager-Kaiser Operator (TKO) with the Multipath Estimating Delay Lock Loop (MEDLL) module to mitigate the GPS multipath efficiently. The general implementation process of the proposed method is that we first utilize the TKO to operate on the received signal’s Auto-Correlation Function (ACF) to get an initial estimate of the multipaths. Then we transfer the initial estimated results to the MEDLL module for a further estimation. Finally, with a few iterations which are less than those of the original MEDLL algorithm, we can get a more accurate estimate of the Line-Of-Sight (LOS) signal, and thus the goal of the GPS multipath mitigation is achieved. The simulation results show that compared to the original MEDLL algorithm, the proposed method can reduce the computation load and the hardware and/or software consumption of the MEDLL module, meanwhile, without decreasing the algorithm accuracy
Generating entanglement with low Q-factor microcavities
We propose a method of generating entanglement using single photons and
electron spins in the regime of resonance scattering. The technique involves
matching the spontaneous emission rate of the spin dipole transition in bulk
dielectric to the modified rate of spontaneous emission of the dipole coupled
to the fundamental mode of an optical microcavity. We call this regime
resonance scattering where interference between the input photons and those
scattered by the resonantly coupled dipole transition result in a reflectivity
of zero. The contrast between this and the unit reflectivity when the cavity is
empty allow us to perform a non demolition measurement of the spin and to non
deterministically generate entanglement between photons and spins. The chief
advantage of working in the regime of resonance scattering is that the required
cavity quality factors are orders of magnitude lower than is required for
strong coupling, or Purcell enhancement. This makes engineering a suitable
cavity much easier particularly in materials such as diamond where etching high
quality factor cavities remains a significant challenge
- …