10 research outputs found

    Physiochemical characteristics ofindoor PM2.5 with combustion ofdried yak dung as biofuel in TibetanPlateau, China

    No full text
    People inhabiting the Tibetan Plateau rely for survival on the yak, the region&rsquo;s native cattle. One of the important products of yak is dung, which has been served as cooking and heating fuels in the traditional Tibetan pastoralist society for several thousand years. The indoor air quality (IAQ) at eight residential homes with altitudes ranging from 3212 m to 4788 m was investigated in November 2012 to obtain a shot-term profile of emission from combustion of dried yak dung as biofuel in pastoral and agro-pastoral regions on the Tibetan Plateau. The indoor temperature, relative humidity, CO2 and mass concentrations of PM2.5 were monitored for around a 4-h period (5 kg dried fuel was consumed) at each site. Filter-based aerosol samples were also collected to characterize their elemental compositions, water-soluble ions, carbonaceous species and individual particle morphologies. The results showed that combustion of solid biomass fuel in cast-iron stove is the preliminary source of indoor particulate pollution. The average indoor and outdoor PM2.5 mass concentrations were 330.7 and 29.1 lg/m3, respectively. Individual particle analysis showed that most of the particles in smoke from dung burning were in the submicrometer size range. Regular and irregular organic balls and soot aggregates were the predominant species in the smoke (&gt;90% in numbers). The data set in this study can provide significant basis for IAQ and epidemiology study on the Tibetan Plateau.</p

    Chemical composition of PM2.5 at a high–altitude regional backgroundsite over Northeast of Tibet Plateau

    No full text
    Aerosol samples were collected from a site near Qinghai Lake (QHL) on the northeastern margin of the Tibetan Plateau (TP) to investigate PM2.5 mass levels and chemical composition, especially their seasonal patterns and sources. The PM2.5 ranged from 5.7 to 149.7&nbsp;&mu;g m&ndash;3, and it was predominately crustal material (-40% on average). The combined mass of eight water&ndash;soluble inorganic ions ranged from 1.0 to 41.5&nbsp;&mu;g m&ndash;3, with the largest contributions from SO42&ndash; NO3-, and Ca2+. Low abundances of organic carbon (OC, range: 1.0 to 8.2&nbsp;&mu;g m&ndash;3) and elemental carbon (EC, 0.2 to 2.3&nbsp;&mu;g m&ndash;3) were found in QHL. Weak seasonality in the OC/EC ratio (4.5&plusmn;2.0) indicated simple and stable sources for carbonaceous particles. The water&ndash;soluble ions, OC and EC accounted for ~30%, 10% and 2% of the PM2.5, respectively. Water&ndash;soluble organic carbon (WSOC, range: 0.5 to 4.3&nbsp;&mu;g m&ndash;3) accounted for 47.8% of the OC. Both OC and WSOC were positively correlated with water&ndash;soluble K+(r=0.70 and 0.73 respectively), an indicator of biomass burning. Higher WSOC and stronger correlations between WSOC and EC in spring and winter compared with summer and autumn are evidence for primary biomass burning aerosols. The concentrations of mass and major compositions were 2&ndash;10 times higher than those for some TP or continental background sites but much lower than urban areas. Compared with particles produced from burning yak dung (a presumptive source material), PM2.5 had higher SO42&ndash;/OC ratios. The higher ratios were presumed as a result of fossil fuel combustion. After excluding data for dust storms events, the relative percentages of OM, EC, K+, NH4+, NO3&ndash; and mineral dust showed little difference among seasons despite different monsoons dominated in four seasons; implying that the PM2.5 sources were relatively stable. The results from QHL evidently reflect regional cha racteristics of the aerosol.</p

    Black carbon aerosol in winter northeastern Qinghai–TibetanPlateau, China: the source, mixing state and optical property

    No full text
    Black carbon (BC) aerosol at high altitudes of the Qinghai-Tibetan Plateau has potential effects on the regional climate and hydrological cycle. An intensive measurement campaign was conducted at Qinghai Lake (~3200m above sea level) at the edge of the northeastern Qinghai- Tibetan Plateau during winter using a ground-based single particle soot photometer (SP2) and a photoacoustic extinctiometer (PAX). The average concentration of refractory BC (rBC) and number fraction of coated rBC were found to be 160&Acirc;&plusmn;190 ngm-3 and 59% for the entire campaign, respectively. Significant enhancements of rBC loadings and number fraction of coated rBC were observed during a pollution episode, with an average value of 390 ngm-3 and 65%, respectively. The mass size distribution of rBC particles showed log-normal distribution, with a peak diameter of ~187 nm regardless of the pollution level. Five-day backward trajectory analysis suggests that the air masses from north India contributed to the increased rBC loadings during the campaign. The potential source contribution function (PSCF) model combined with the fire counts map further proves that biomass burning from north India is an important potential source influencing the northeastern Qinghai-Tibetan Plateau during the pollution episode. The rBC mass absorption cross section (MACrBC/ at &Icirc;&raquo; = 532 nm was slightly larger in clean days (14.9m&Acirc;&sup2; g-1) than during the pollution episode (9.3m&Acirc;&sup2; g-1), likely due to the effects of brown carbon and the uncertainty of the MACrBC calculation. The MACrBC was positively correlated with number fraction of coated rBC during the pollution episode with an increasing rate of 0.18 (m&Acirc;&sup2; g-1)%-1. The number fraction of coated rBC particles showed positive correlation with light absorption, suggesting that the increase of coated rBC particles will enhance the light absorption. Compared to rBC mass concentration, rBC mixing sate is more important in determining absorption during the pollution episode, estimated from the same percentage-wise increment of either rBC mass concentration or the number fraction of coated rBC. The estimated BC direct radiative forcing was C0.93Wm-2 for the pollution episode, which is 2 times larger than that in clean days. Our study provides insight into the potential climatic impacts of rBC aerosol transported to the Qinghai-Tibetan Plateau from south Asian regions, and is also useful for future modeling studies.</p

    Winter and Summer Characteristics of Airborne Particles Inside Emperor Qin's Terra-Cotta Museum, China: A Study by Scanning Electron Microscopy-Energy Dispersive X-Ray Spectrometry

    No full text
    Day- and nighttime total suspended particulate matter was collected inside and outside Emperor Qin&#39;s Terra-Cotta Museum in winter and summer 2008. The purpose was to characterize the winter and summer differences of indoor airborne particles in two display halls with different architectural and ventilation conditions, namely the Exhibition Hall and Pit No. 1. The morphology and elemental composition of two season samples were investigated using scanning electron microscopy and energy dispersive X-ray spectrometry. It is found that the particle size, particle mass concentration, and particle type were associated with the visitor numbers in the Exhibition Hall and with the natural ventilation in Pit No. 1 in both winter and summer. Evident winter and summer changes in the composition and physicochemical properties of the indoor suspended particulate matters were related to the source emission and the meteorological conditions. Particle mass concentrations in both halls were higher in winter than in summer. In winter, the size of the most abundant particles at the three sites were all between 0.5 and 1.0 mu m, whereas in summer the peaks were all located at less than 0.5 mu m. The fraction of sulfur-containing particles was 2-7 times higher in winter than in summer. In addition to the potential soiling hazard, the formation and deposition of sulfur-containing particles in winter may lead to the chemical and physical weathering of the surfaces of the terra-cotta statues.</p

    Indoor air quality at five site museums of Yangtze River civilization

    No full text
    The Yangtze River civilization, dating back to more than 7 thousand years ago, is one of the most historic culture aggregates in China. For long-term conservation of archaeological artifacts and historical ruins along the Yangtze River, indoor air quality at five site museums were investigated during summer and winter. Unstable microclimate conditions were observed at all five museums. The maximal seasonal variations in temperature and relative humidity were 25.7 C and 40.0%, respectively. The mass concentration of PM2.5 inside the museums remained at high levels, ranging from 33.9 to 79.6 mg/m3 in winter and from 52.8 to 113.0 mg/m3 in summer. Organic matter (OM) constituted a major fraction (39.3% e53.9% in summer, 22.1%e27.8% in winter) of total PM2.5. The results showed that besides short-term fluctuation and seasonal variation in microclimate conditions, infiltration of gaseous and particulate air pollutants should be of increasing concern at museums in Southern China.</p

    Size Differentiation of Individual Atmospheric Aerosol during Winter in Xi'an, China

    No full text
    Airborne particulate matter (including TSP, PM10, PM2.5, and PM1) were collected at an urban site in Xi&#39;an during winter 2010. Individual particles were analyzed using scanning electron microscopy and energy dispersive X-ray spectrometer (SEM-EDX). The morphologies, size distributions, and relative abundance of aerosol particles in each size were summarized. The monomodal particle size distribution was found in all the samples under different weather conditions, with the peaks located at less than 1.0 mu m. The majority of particles were composed of soot, mineral dust, and tar balls, with minor fly ash particles. Soot aggregates were the predominant species (in numbers), ranging from 56.6% in TSP on a sunny day to 86.3% in PM1 on a cloudy day, with an average of 73.2% in all the samples. The particle mass concentration and chemical composition, including water-soluble inorganic ions, elemental compositions, organic carbon (OC) and elemental carbon (EC) contents of 24-hr integrated PM2.5, were also subject to chemical bulk analysis. Soot was predominantly observed in the PM2.5 samples (from 74.7% to 82.7% in numbers), whereas EC accounted for only a small amount (&lt; 8%) of the PM2.5 mass. Corresponding to the mass concentrations of geological materials (29.2%, 44.5%, and 37.3% on sunny, cloudy, and hazy days), the number concentrations of mineral dust and fly ash particles on the sunny, cloudy, and hazy days were 14.6%, 7.1%, and 7.7%, respectively.</p

    Indoor air quality at five site museums of Yangtze River civilization

    No full text
    The Yangtze River civilization, dating back to more than 7 thousand years ago, is one of the most historic culture aggregates in China. For long-term conservation of archaeological artifacts and historical ruins along the Yangtze River, indoor air quality at five site museums were investigated during summer and winter. Unstable microclimate conditions were observed at all five museums. The maximal seasonal variations in temperature and relative humidity were 25.7 C and 40.0%, respectively. The mass concentration of PM2.5 inside the museums remained at high levels, ranging from 33.9 to 79.6 mg/m3 in winter and from 52.8 to 113.0 mg/m3 in summer. Organic matter (OM) constituted a major fraction (39.3% e53.9% in summer, 22.1%e27.8% in winter) of total PM2.5. The results showed that besides short-term fluctuation and seasonal variation in microclimate conditions, infiltration of gaseous and particulate air pollutants should be of increasing concern at museums in Southern China.</p

    Chemical Composition of PM(10) and PM(2.5) Collected at Ground Level and 100 Meters during a Strong Winter-Time Pollution Episode in Xi'an, China

    No full text
    An intensive sampling of aerosol particles from ground level and 100 m was conducted during a strong pollution episode during the winter in Xi&#39;an, China. Concentrations of water-soluble inorganic ions, carbonaceous compounds, and trace elements were determined to compare the composition of particulate matter (PM) at the two heights. PM mass concentrations were high at both stations: PM(10) (PM with aerodynamic diameter &lt;= 10 mu m) exceeded the China National Air Quality Standard Class II value on three occasions, and PM(2.5) (PM with aerodynamic diameter &lt;= 2.5 mu m) exceeded the daily U.S. National Ambient Air Quality Standard more than 10 times. The PM(10) organic carbon (OC) and elemental carbon (EC) were slightly lower at the ground than at 100 m, both in terms of concentration and percentage of total mass, but OC and EC in PM(2.5) exhibited the opposite pattern. Major ionic species, such as sulfate and nitrate, showed vertical variations similar to the carbonaceous aerosols. High sulfate concentrations indicated that coal combustion dominated the PM mass both at the ground and 100 m. Correlations between K(+) and OC and EC at 100 m imply a strong influence from suburban biomass burning, whereas coal combustion and motor vehicle exhaust had a greater influence on the ground PM. Stable atmospheric conditions apparently led to the accumulation of PM, especially at 100 m, and these conditions contributed to the similarities in PM at the two elevations. Low coefficient of divergence (CD) values reflect the similarities in the composition of the aerosol between sites, but higher CDs for fine particles compared with coarse ones were consistent with the differences in emission sources between the ground and 100 m.</p

    Black carbon aerosol characterization in a remote area of qinghai-tibetan plateau, western china

    No full text
    The concentrations, size distributions, and mixing states of refractory black carbon (rBC) aerosols were measured with a ground-based Single Particle Soot Photometer (SP2), and aerosol absorption was measured with an Aethalometer at Qinghai Lake (QHL), a rural area in the Northeastern Tibetan Plateau of China in October 2011. The area was not pristine, with an average rBC mass concentration of 0.36&mu;gSTP-m-3 during the two-week campaign period. The rBC concentration peaked at night and reached the minimal in the afternoon. This diurnal cycle of concentration is negatively correlated with the mixed layer depth and ventilation. When air masses from the west of QHL were sampled in late afternoon to early evening, the average rBC concentration of 0.21&mu;gSTP-m-3 was observed, representing the rBC level in a larger Tibetan Plateau region because of the highest mixed layer depth. A lognormal primary mode with mass median diameter (MMD) of ~175nm, and a small secondary lognormal mode with MMD of 470-500nm of rBC were observed. Relative reduction in the secondary mode during a snow event supports recent work that suggested size dependent removal of rBC by precipitation. About 50% of the observed rBC cores were identified as thickly coated by non-BC material. A comparison of the Aethalometer and SP2 measurements suggests that non-BC species significantly affect the Aethalometer measurements in this region. A scaling factor for the Aethalometer data at a wavelength of 880nm is therefore calculated based on the measurements, which may be used to correct other Aethalometer datasets collected in this region for a more accurate estimate of the rBC loading. The results present here significantly improve our understanding of the characteristics of rBC aerosol in the less studied Tibetan Plateau region and further highlight the size dependent removal of BC via precipitation.</p

    Impact of Meteorological Parameters and Gaseous Pollutants on PM2.5 and PM10Mass Concentrations during 2010 in Xi’an, China

    No full text
    Mass concentrations of PM2.5 and PM10 from the six urban/rural sampling sites of Xi&rsquo;an were obtained during two weeks of every month corresponding to January, April, July and October during 2010, together with the six meteorological parameters and the data of two precursors. The result showed that the average annual mass concentrations of PM2.5 and PM10 were 140.9 &plusmn; 108.9 &micro;g m&ndash;3 and 257.8 &plusmn; 194.7 &micro;g m&ndash;3, respectively. Basin terrain constrains the diffusion of PM2.5 and PM10 concentration spatially. High concentrations in wintertime and low concentrations in summertime are due to seasonal variations of meteorological parameters and cyclic changes of precursors (SO2 and NO2). Stepwise Multiple Linear Regression (MLR) analysis indicates that relative humidity is the main factor influencing on meteorological parameter. Entry MLR analysis suggests that SO2 from local coal-burning power plants is still the primary pollutant. Trajectory cluster results of PM2.5 at BRR indicate that the entrained urban pollutants carried by the westerly or winter monsoon forms the dominant regional pollution sources in winter and spring. Ultraviolet (UV) aerosol index verified the source and pathway of dust storm in spring.</p
    corecore