22 research outputs found

    The Role of Endophytic Fungi in the Anticancer Activity of Morinda citrifolia

    Get PDF
    We hypothesize that the fungal endophytes of noni may possibly play a role in its overall pharmacological repertoire, especially since the perceived efficacy of the fruit in ethnomedicinal use is associated with the fermented juice. The foremost goal of this study is to explore the role of endophyte-derived secondary metabolites in the purported anticancer properties of noni. To that end, culturable endophytic fungi resident within the healthy leaves and fruit of the plant were isolated and identified by molecular sequence analysis of the 5.8S gene and internal transcribed spacers (ITS). Purified organisms were subjected to in vitro fermentation in malt extract broth for 8 weeks under anaerobic conditions at room temperature (25°C), in order to simulate the conditions under which traditional fermented noni juice is prepared. The cytotoxic potential of organic extracts derived from the fermented broths of individual endophytes was then tested against three major cancers that afflict humans. Twelve distinct endophytic fungal species were obtained from the leaves and 3 from the fruit. Three of the leaf endophytes inhibited the growth of human carcinoma cell lines LU-1 (lung), PC-3 (prostate), and MCF-7 (breast) with IC50 values of ≤10 μg/mL

    Preparation Preparation Preparation Preparation of of of of Highly Highly Highly Highly Porous Porous Porous Porous Carbon Carbon Carbon Carbon from from from from Resins Resins Resins Resins after after after after the the the the Treatment Treatment Tre

    No full text
    The most commonly used electrode materials for supercapacitors are carbon, including porous activated carbon, carbon aerogels, carbon nanotubes , carbon nanofibres, graphenes and so on. Owing to their high specific surface area, low cost and easy processing ability, porous activated carbon has attracted much attention compared to other carbon materials. 2 Heavy metals are widely employed in many industrial applications, such as chemical manufacturing, electroplating, mining, nuclear and other industries. These procedures have been producing a large amount of waste solution containing heavy metals ions which are toxic and pollutants of the environment. 5 In addition, the process is quite eco-friendly because the adsorbed heavy metals can be collected by a simple treatment and the resins can be easily recycled by acid washing while producing no new pollutants. Here we reported a novel method to prepare highly graphitized porous carbon for supercapacitors in combination with removal of heavy metal ions from wastewater. We have proposed a facile strategy to produce energy materials in combination with industrial pollutant treatment. A commercial ion exchange resin (styrene, macroporous) D001 was used to remove M2O7 2-(M=Cr, Mo, W) from industrial wastewater, respectively, which were then carbonized to prepare porous carbon possessing very high graphitic degree and large specific surface area. During the carbonization process, the absorbed M2O7 2-played a role as templates to form a highly porous structure as well as catalyst to promote the graphitization of carbon at moderate temperature. The adsorption content of M2O7 2-in the resins after three cycles of treatment was estimated to be around 1.05 mmol/g. It indicates that the M2O7 2-pollutant was almost removed after successively adsorbed by D001 for three cycles (6 h per cycle). The specific surface areas of the produced carbon materials were measured using the BrunauerEmmett-Teller (BET), The specific surface area of the Cr-treated sample is about 2116.3 m 2 g -1 , and both the N2 adsorption-desorption isotherm and TEM suggest that the produced carbon materials owing highly mesoporous structure. The Raman spectroscopy and HRTEM both show produced carbon materials possessing very high graphite degree. Symmetric supercapacitors based on this porous carbon exhibited superior electrochemical performance with a good combination of high specific capacitance (122.5 F g -1 at the current density of 1 A g -1 ), stable cycling, and particularly remarkable high rate capability (with a remaining capacitance of >100 F g -1 at 10 A g -1 ). The method presented here provides an excellent platform taking advantage of environment protection and developing sustainable energy materials as well. References References References References Acknowledgments Acknowledgments Acknowledgments Acknowledgment

    A template-stripped carbon nanofiber/poly(styrene-butadiene-styrene) compound for high-sensitivity pressure and strain sensing

    No full text
    Materials selection and microstructural design of the sensing part of flexible pressure sensors are of great significance in improving their performance. However, achieving synergy between the sensing material and the microstructure of the flexible sensors remains a challenge. Herein, compressible and stretchable sensors based on a carbon nanofiber/poly(styrene-butadiene-styrene) (CNF/SBS) compound are demonstrated with a template-stripped method for detecting various human motions, including pulses, finger bending and pressure distributions. Benefiting from the adjustable fingerprint microstructure and mass fraction of CNFs, the as-designed flexible pressure sensor dramatically achieves a high sensitivity of 769.2 kPa-1, a low detection limit of 5 Pa and high reliability of over 1000 cycles. Moreover, the flexible sensor based on CNF/SBS can be stretched due to the outstanding tensile properties of SBS. The enhanced stretchable sensor remarkably possesses a high gauge factor of 105.6 with a stretch range of 0%-300% and up to 600% elongation. Importantly, the proposed pressure and tension strain sensors are investigated to monitor vigorous human motion, revealing their tremendous potential for applications in flexible compressible and stretchable wearable electronics

    Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island.

    No full text
    Camellia oleifera Abel. (C. oleifera), as an important woody tree species producing edible oils in China, has attracted enormous attention due to its abundant unsaturated fatty acids and their associated benefits to human health. To reveal novel insights into the characters during the maturation period of this plant as well as the molecular basis of fatty acid biosynthesis and degradation, we conducted a conjoint analysis of the transcriptome and proteome of C. oleifera seeds from Hainan Island. Using RNA sequencing (RNA-seq) technology and shotgun proteomic method, 59,391 transcripts and 40,500 unigenes were obtained by TIGR Gene Indices Clustering Tools (TGICL), while 1691 protein species were identified from Mass Spectrometry (MS). Subsequently, all genes and proteins were employed in euKaryotic Orthologous Groups (KOG) classification, Gene Ontology (GO) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to investigate their essential functions. The results indicated that the most abundant pathways were biological metabolic processes. There were 946 unigenes associated with lipid metabolism at the transcriptome level, with 116 proteins at the proteome level; among these, 38 specific proteins were involved in protein-protein interactions, with the majority being related to fatty acid catabolic process. The expression levels of 21 candidate unigenes encoding target proteins were further detected by quantitative real-time polymerase chain reaction (qRT-PCR). Finally, Gas Chromatography Mass Spectrometry (GC-MS) was carried out to determine the fatty acid composition of C. oleifera oil. These findings not only deepened our understanding about the molecular mechanisms of fatty acid metabolism but also offered new evidence concerning the roles of relevant proteins in oil-bearing crops. Furthermore, the lipid-associated proteins recognized in this research might be helpful in providing a reference for the synthetic regulation of C. oleifera oil quality by genetic engineering techniques, thus resulting in potential application in agriculture

    Inhibitory Effect of Polypeptides Produced by <em>Brevibacillus brevis</em> on Ochratoxigenic Fungi in the Process of Pile-Fermentation of Post-Fermented Tea

    No full text
    Contamination by ochratoxigenic fungi and its prevention during the pile-fermentation of post-fermented tea have always been a concern. The present study aimed to elucidate the anti-fungal effect and mechanism of polypeptides produced by B. brevis DTM05 (isolated from post-fermented tea) on ochratoxigenic fungi, and to to evaluate their use in the pile-fermentation process of post-fermented tea. The results showed that polypeptides (produced by B. brevis DTM05) with a strong antifungal effect against A. carbonarius H9 mainly had a molecular weight between 3 and 5 kDa. The Fourier-transform infrared spectra of this polypeptide extract showed that it was a mixture consisting mainly of polypeptides and small amounts of lipids and other carbohydrates. The polypeptide extracts significantly inhibited the growth of A. carbonarius H9, and its minimum inhibitory concentration (MIC) was 1.6 mg/L, which significantly reduced the survival rate of spores. The polypeptides also effectively controlled the occurrence and ochratoxin A (OTA) production of A. carbonarius H9 on the tea matrix. The lowest concentration of polypeptides that significantly inhibited the growth of A. carbonarius H9 on the tea matrix was 3.2 mg/L. The enhancement of the fluorescence staining signal in the mycelium and conidiospore showed that the polypeptides with a concentration of more than 1.6 mg/L increased the permeability of the mycelium membrane and conidial membrane of A. carbonarius H9. The significant increase in the extracellular conductivity of mycelia suggested the outward leakage of intracellular active substances, and also further indicated an increase in cell membrane permeability. Polypeptides with a concentration of 6.4 mg/L significantly down-regulated the expression level of the polyketide synthase gene related to OTA production (acpks) in A. carbonarius H9, which may be the fundamental reason why polypeptides affect OTA production. In conclusion, reasonable use of the polypeptides produced by B. brevis can destroy the structural integrity of the cell membrane, make the intracellular active substances leak outward, accelerate the death of fungal cells and down-regulate the expression level of the polyketide synthase gene in A. carbonarius; thus, they can effectively control the contamination of ochratoxigenic fungi and OTA production during the pile-fermentation of the post-fermented tea

    Deep learning–based radiomic nomograms for predicting Ki67 expression in prostate cancer

    No full text
    Abstract Background To explore the value of a multiparametric magnetic resonance imaging (MRI)-based deep learning model for the preoperative prediction of Ki67 expression in prostate cancer (PCa). Materials The data of 229 patients with PCa from two centers were retrospectively analyzed and divided into training, internal validation, and external validation sets. Deep learning features were extracted and selected from each patient’s prostate multiparametric MRI (diffusion-weighted imaging, T2-weighted imaging, and contrast-enhanced T1-weighted imaging sequences) data to establish a deep radiomic signature and construct models for the preoperative prediction of Ki67 expression. Independent predictive risk factors were identified and incorporated into a clinical model, and the clinical and deep learning models were combined to obtain a joint model. The predictive performance of multiple deep-learning models was then evaluated. Results Seven prediction models were constructed: one clinical model, three deep learning models (the DLRS-Resnet, DLRS-Inception, and DLRS-Densenet models), and three joint models (the Nomogram-Resnet, Nomogram-Inception, and Nomogram-Densenet models). The areas under the curve (AUCs) of the clinical model in the testing, internal validation, and external validation sets were 0.794, 0.711, and 0.75, respectively. The AUCs of the deep models and joint models ranged from 0.939 to 0.993. The DeLong test revealed that the predictive performance of the deep learning models and the joint models was superior to that of the clinical model (p < 0.01). The predictive performance of the DLRS-Resnet model was inferior to that of the Nomogram-Resnet model (p < 0.01), whereas the predictive performance of the remaining deep learning models and joint models did not differ significantly. Conclusion The multiple easy-to-use deep learning–based models for predicting Ki67 expression in PCa developed in this study can help physicians obtain more detailed prognostic data before a patient undergoes surgery

    Room-Temperature Nanowelding of a Silver Nanowire Network Triggered by Hydrogen Chloride Vapor for Flexible Transparent Conductive Films

    No full text
    High contact resistance between silver nanowires (AgNWs) is a key issue in widespread application of AgNW flexible transparent conductive films as a promising candidate to replace the brittle and expensive indium tin oxide. A facile, room-temperature nanowelding method of an AgNW network triggered by hydrogen chloride (HCl) vapor is demonstrated to reduce the sheet resistance of the AgNW network. Under the visible light, O<sub>2</sub> and HCl vapor serving as an etching couple induced silver atoms to be transferred from the bottom AgNW at the junction to the top one, and then, these silver atoms epitaxially recrystallized at the contact position with the lattice of the top AgNW as the template, ultimately resulting in the coalescence of the junction between AgNWs. Polydimethylsiloxane (PDMS) was spin-coated onto the HCl-vapor-treated (HVT) AgNW network on the polyethylene terephthalate substrate to fabricate PDMS/HVT AgNW films. The fabricated film with low sheet resistance and high transmittance retained its conductivity after 4000 bending cycles. Furthermore, excellent heating performance, electromagnetic interference shielding effectiveness, and foldability were obtained in the PDMS/HVT AgNW film. Thus, the role of the simple nanowelding process is evident in enhancing the performance of AgNW transparent conductive films for emerging soft optoelectronic applications

    Flexible, Transparent and Conductive Metal Mesh Films with Ultra-High FoM for Stretchable Heating and Electromagnetic Interference Shielding

    No full text
    Highlights A transparent, conductive, and flexible metal mesh film has been developed by a low-cost, uniform self-forming crackle template and electroplating strategy. The Cu mesh films show an ultra-low sheet resistance (0.18 Ω □−1), high transmittance (85.8%@550 nm), high figure of merit (> 13,000), excellent stretchability and mechanical stability. The metal mesh film can be used as a flexible heater and electromagnetic interference shielding film (40.4 dB at 2.5 μm)

    Flexible and Highly Sensitive Pressure Sensor Based on Microdome-Patterned PDMS Forming with Assistance of Colloid Self-Assembly and Replica Technique for Wearable Electronics

    No full text
    Flexible pressure sensors are one of the vital component units in the next generation of wearable electronics for monitoring human physiological signals. In order to improve the sensing properties of the sensors, we demonstrate flexible, tunably resistive pressure sensors based on elastic microstructured polydimethylsiloxane (PDMS) film via a simple, low-cost colloid self-assembly technology, which uses monodispersed polystyrene (PS) microspheres as monolayer and an ordered sacrificial template. The sensors exhibit high sensitivity of −15 kPa<sup>–1</sup> under low pressure (<100 Pa), with fast response time (<100 ms), high stability over 1000 cycles of pressure loading/unloading, low-pressure detection limit of 4 Pa, and wide working pressure regime (<5 kPa) by optimizing the size of PS microspheres. Moreover, the multipixel arrays of the pressure sensor are fabricated to illustrate the sensing ability of space pressure distribution. The developed flexible pressure sensors are successfully used to detect human neck pulse, show great promise for monitoring human body motions, and have potential applications in wearable devices

    Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure

    No full text
    Flexible pressure sensors have attracted increasing research interest because of their potential applications for wearable sensing devices. Herein, a highly sensitive flexible pressure sensor is exhibited based on the elastomeric electrodes and a microarray architecture. Polydimethylsiloxane (PDMS) substrate, coated with silver nanowires (AgNWs), is used as the top electrode, while polyvinylidene fluoride (PVDF) as the dielectric layer. Several transfer processes are applied on seeking facile strategy for the preparation of the bottom electrode via embedding AgNWs into the PDMS film of microarray structure. The flexible pressure sensor integrates the top electrode, dielectric layer, and microarray electrode in a sandwich structure. It is demonstrated that such sensors possess the superiorities of high sensitivity (2.94 kPa<sup>–1</sup>), low detection limit (<3 Pa), short response time (<50 ms), excellent flexibility, and long-term cycle stability. This simple process for preparing such sensors can also be easily scaled up to construct pressure sensor arrays for detecting the intensity and distribution of the loaded pressure. In addition, this flexible pressure sensor exhibits good performance even in a noncontact way, such as detecting voice vibrations and air flow. Due to its superior performance, this designed flexible pressure sensor demonstrates promising potential in the application of electronic skins, as well as wearable healthcare monitors
    corecore