134 research outputs found

    Expression Syntax Information Bottleneck for Math Word Problems

    Full text link
    Math Word Problems (MWP) aims to automatically solve mathematical questions given in texts. Previous studies tend to design complex models to capture additional information in the original text so as to enable the model to gain more comprehensive features. In this paper, we turn our attention in the opposite direction, and work on how to discard redundant features containing spurious correlations for MWP. To this end, we design an Expression Syntax Information Bottleneck method for MWP (called ESIB) based on variational information bottleneck, which extracts essential features of expression syntax tree while filtering latent-specific redundancy containing syntax-irrelevant features. The key idea of ESIB is to encourage multiple models to predict the same expression syntax tree for different problem representations of the same problem by mutual learning so as to capture consistent information of expression syntax tree and discard latent-specific redundancy. To improve the generalization ability of the model and generate more diverse expressions, we design a self-distillation loss to encourage the model to rely more on the expression syntax information in the latent space. Experimental results on two large-scale benchmarks show that our model not only achieves state-of-the-art results but also generates more diverse solutions. The code is available.Comment: This paper has been accepted by SIGIR 2022. The code can be found at https://github.com/menik1126/math_ESI

    Self-consistent Reasoning For Solving Math Word Problems

    Full text link
    Math word problems (MWPs) is a task that automatically derives solution expression from a giving math problems in text. The previous studies suffer from spurious correlations between input text and output expression. To mitigate this issue, we propose a self-consistent reasoning framework called SCR, which attempts to adopt a pruning strategy to correct the output distribution shift so as to implicitly fix those spurious correlative samples. Specifically, we firstly obtain a sub-network by pruning a roberta2tree model, for the sake to use the gap on output distribution between the original roberta2tree model and the pruned sub-network to expose spurious correlative samples. Then, we calibrate the output distribution shift by applying symmetric Kullback-Leibler divergence to alleviate spurious correlations. In addition, SCR generates equivalent expressions, thereby, capturing the original text's logic rather than relying on hints from original text. Extensive experiments on two large-scale benchmarks demonstrate that our model substantially outperforms the strong baseline methods.Comment: Submitted to IEEE ICASSP 202

    More than Encoder: Introducing Transformer Decoder to Upsample

    Full text link
    Medical image segmentation methods downsample images for feature extraction and then upsample them to restore resolution for pixel-level predictions. In such a schema, upsample technique is vital in restoring information for better performance. However, existing upsample techniques leverage little information from downsampling paths. The local and detailed feature from the shallower layer such as boundary and tissue texture is particularly more important in medical segmentation compared with natural image segmentation. To this end, we propose a novel upsample approach for medical image segmentation, Window Attention Upsample (WAU), which upsamples features conditioned on local and detailed features from downsampling path in local windows by introducing attention decoders of Transformer. WAU could serve as a general upsample method and be incorporated into any segmentation model that possesses lateral connections. We first propose the Attention Upsample which consists of Attention Decoder (AD) and bilinear upsample. AD leverages pixel-level attention to model long-range dependency and global information for a better upsample. Bilinear upsample is introduced as the residual connection to complement the upsampled features. Moreover, considering the extensive memory and computation cost of pixel-level attention, we further design a window attention scheme to restrict attention computation in local windows instead of the global range. We evaluate our method (WAU) on classic U-Net structure with lateral connections and achieve state-of-the-art performance on Synapse multi-organ segmentation, Medical Segmentation Decathlon (MSD) Brain, and Automatic Cardiac Diagnosis Challenge (ACDC) datasets. We also validate the effectiveness of our method on multiple classic architectures and achieve consistent improvement.Comment: Accepted by BIBM202

    Self-Supervised Gait Encoding with Locality-Aware Attention for Person Re-Identification

    Full text link
    Gait-based person re-identification (Re-ID) is valuable for safety-critical applications, and using only 3D skeleton data to extract discriminative gait features for person Re-ID is an emerging open topic. Existing methods either adopt hand-crafted features or learn gait features by traditional supervised learning paradigms. Unlike previous methods, we for the first time propose a generic gait encoding approach that can utilize unlabeled skeleton data to learn gait representations in a self-supervised manner. Specifically, we first propose to introduce self-supervision by learning to reconstruct input skeleton sequences in reverse order, which facilitates learning richer high-level semantics and better gait representations. Second, inspired by the fact that motion's continuity endows temporally adjacent skeletons with higher correlations ("locality"), we propose a locality-aware attention mechanism that encourages learning larger attention weights for temporally adjacent skeletons when reconstructing current skeleton, so as to learn locality when encoding gait. Finally, we propose Attention-based Gait Encodings (AGEs), which are built using context vectors learned by locality-aware attention, as final gait representations. AGEs are directly utilized to realize effective person Re-ID. Our approach typically improves existing skeleton-based methods by 10-20% Rank-1 accuracy, and it achieves comparable or even superior performance to multi-modal methods with extra RGB or depth information. Our codes are available at https://github.com/Kali-Hac/SGE-LA.Comment: Accepted at IJCAI 2020 Main Track. Sole copyright holder is IJCAI. Codes are available at https://github.com/Kali-Hac/SGE-L

    Towards Intelligent Decision Making in Emotion-aware Applications

    Get PDF
    In this paper, we propose an intelligent emotion-aware system (IES), which aims to provide a systematic approach that can make use of the online technology to improve the intelligence of different emotion-aware mobile applications. IES is constructed to provide multi-dimensional online social community data collection and processing approaches for decision making, so as to recommend intelligent services for emotion-aware mobile applications. Furthermore, we present a flow of intelligent decision making process designed on IES, and highlight the implementation and orchestration of several key technologies and schemes applied in this system for different emotion-aware mobile applications in run-time. We demonstrate the feasibility of the proposed IES by presenting a novel emotion-aware mobile application - iSmile, and evaluate the system performance based on this application

    Forgetting before Learning: Utilizing Parametric Arithmetic for Knowledge Updating in Large Language Models

    Full text link
    Recently Large Language Models (LLMs) have demonstrated their amazing text understanding and generation capabilities. However, even stronger LLMs may still learn incorrect knowledge from the training corpus, as well as some knowledge that is outdated over time. Direct secondary fine-tuning with data containing new knowledge may be ineffective in updating knowledge due to the conflict between old and new knowledge. In this paper, we propose a new paradigm for fine-tuning called F-Learning (Forgetting before Learning), which is based on parametric arithmetic to achieve forgetting of old knowledge and learning of new knowledge. Experimental results on two publicly available datasets demonstrate that our proposed F-Learning can obviously improve the knowledge updating performance of both full fine-tuning and LoRA fine-tuning. Moreover, we have also discovered that forgetting old knowledge by subtracting the parameters of LoRA can achieve a similar effect to subtracting the parameters of full fine-tuning, and sometimes even surpass it significantly.Comment: 8 pages, 2 figures, 2 table
    corecore