41 research outputs found
Multi-hop Diffusion LMS for Energy-constrained Distributed Estimation
We propose a multi-hop diffusion strategy for a sensor network to perform
distributed least mean-squares (LMS) estimation under local and network-wide
energy constraints. At each iteration of the strategy, each node can combine
intermediate parameter estimates from nodes other than its physical neighbors
via a multi-hop relay path. We propose a rule to select combination weights for
the multi-hop neighbors, which can balance between the transient and the
steady-state network mean-square deviations (MSDs). We study two classes of
networks: simple networks with a unique transmission path from one node to
another, and arbitrary networks utilizing diffusion consultations over at most
two hops. We propose a method to optimize each node's information neighborhood
subject to local energy budgets and a network-wide energy budget for each
diffusion iteration. This optimization requires the network topology, and the
noise and data variance profiles of each node, and is performed offline before
the diffusion process. In addition, we develop a fully distributed and adaptive
algorithm that approximately optimizes the information neighborhood of each
node with only local energy budget constraints in the case where diffusion
consultations are performed over at most a predefined number of hops. Numerical
results suggest that our proposed multi-hop diffusion strategy achieves the
same steady-state MSD as the existing one-hop adapt-then-combine diffusion
algorithm but with a lower energy budget.Comment: 14 pages, 12 figures. Submitted for publicatio
A Multitask Diffusion Strategy with Optimized Inter-Cluster Cooperation
We consider a multitask estimation problem where nodes in a network are
divided into several connected clusters, with each cluster performing a
least-mean-squares estimation of a different random parameter vector. Inspired
by the adapt-then-combine diffusion strategy, we propose a multitask diffusion
strategy whose mean stability can be ensured whenever individual nodes are
stable in the mean, regardless of the inter-cluster cooperation weights. In
addition, the proposed strategy is able to achieve an asymptotically unbiased
estimation, when the parameters have same mean. We also develop an
inter-cluster cooperation weights selection scheme that allows each node in the
network to locally optimize its inter-cluster cooperation weights. Numerical
results demonstrate that our approach leads to a lower average steady-state
network mean-square deviation, compared with using weights selected by various
other commonly adopted methods in the literature.Comment: 30 pages, 8 figures, submitted to IEEE Journal of Selected Topics in
Signal Processin
Network infection source identification under the SIRI model
We study the problem of identifying a single infection source in a network
under the susceptible-infected-recovered-infected (SIRI) model. We describe the
infection model via a state-space model, and utilizing a state propagation
approach, we derive an algorithm known as the heterogeneous infection spreading
source (HISS) estimator, to infer the infection source. The HISS estimator uses
the observations of node states at a particular time, where the elapsed time
from the start of the infection is unknown. It is able to incorporate side
information (if any) of the observed states of a subset of nodes at different
times, and of the prior probability of each infected or recovered node to be
the infection source. Simulation results suggest that the HISS estimator
outperforms the dynamic message pass- ing and Jordan center estimators over a
wide range of infection and reinfection rates.Comment: 5 pages, 3 figures; to present in ICASSP 201
An Event-based Diffusion LMS Strategy
We consider a wireless sensor network consists of cooperative nodes, each of
them keep adapting to streaming data to perform a least-mean-squares
estimation, and also maintain information exchange among neighboring nodes in
order to improve performance. For the sake of reducing communication overhead,
prolonging batter life while preserving the benefits of diffusion cooperation,
we propose an energy-efficient diffusion strategy that adopts an event-based
communication mechanism, which allow nodes to cooperate with neighbors only
when necessary. We also study the performance of the proposed algorithm, and
show that its network mean error and MSD are bounded in steady state. Numerical
results demonstrate that the proposed method can effectively reduce the network
energy consumption without sacrificing steady-state network MSD performance
significantly
Central-tapped node linked modular fault-tolerance topology for SRM applications
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs
Enabling controlling complex networks with local topological information
Complex networks characterize the nature of internal/external interactions in real-world systems
including social, economic, biological, ecological, and technological networks. Two issues keep as
obstacles to fulflling control of large-scale networks: structural controllability which describes the
ability to guide a dynamical system from any initial state to any desired fnal state in fnite time, with a
suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost
for driving the network to a predefned state with a given number of control inputs. For large complex
networks without global information of network topology, both problems remain essentially open.
Here we combine graph theory and control theory for tackling the two problems in one go, using only
local network topology information. For the structural controllability problem, a distributed local-game
matching method is proposed, where every node plays a simple Bayesian game with local information
and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity.
Starring from any structural controllability solution, a minimizing longest control path method can
efciently reach a good solution for the optimal control in large networks. Our results provide solutions
for distributed complex network control and demonstrate a way to link the structural controllability and
optimal control together.The work was partially supported by National Science Foundation of China (61603209), and Beijing Natural Science Foundation (4164086), and the Study of Brain-Inspired Computing System of Tsinghua University program (20151080467), and Ministry of Education, Singapore, under contracts RG28/14, MOE2014-T2-1-028 and MOE2016-T2-1-119. Part of this work is an outcome of the Future Resilient Systems project at the Singapore-ETH Centre (SEC), which is funded by the National Research Foundation of Singapore (NRF) under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. (61603209 - National Science Foundation of China; 4164086 - Beijing Natural Science Foundation; 20151080467 - Study of Brain-Inspired Computing System of Tsinghua University program; RG28/14 - Ministry of Education, Singapore; MOE2014-T2-1-028 - Ministry of Education, Singapore; MOE2016-T2-1-119 - Ministry of Education, Singapore; National Research Foundation of Singapore (NRF) under Campus for Research Excellence and Technological Enterprise (CREATE) programme)Published versio
Author correction: Enabling controlling complex networks with local topological information
Correction to: Scientific Reports https://doi.org/10.1038/s41598-018-22655-5, published online 15 March 2018.
The Acknowledgements section in this Article is incomplete.The work was partially supported by National Science Foundation of China (61603209, 61327902), and Beijing Natural Science Foundation (4164086), and the Study of Brain-Inspired Computing System of Tsinghua University program (20151080467), and SuZhou-Tsinghua innovation leading program 2016SZ0102, and Ministry of Education, Singapore, under contracts RG28/14, MOE2014-T2-1-028 and MOE2016-T2-1-119. Part of this work is an outcome of the Future Resilient Systems project at the Singapore-ETH Centre (SEC), which is funded by the National Research Foundation of Singapore (NRF) under its Campus for Research Excellence and Technological Enterprise (CREATE) program. (61603209 - National Science Foundation of China; 61327902 - National Science Foundation of China; 4164086 - Beijing Natural Science Foundation; 20151080467 - Study of Brain-Inspired Computing System of Tsinghua University program; 2016SZ0102 - SuZhou-Tsinghua innovation leading program; RG28/14 - Ministry of Education, Singapore; MOE2014-T2-1-028 - Ministry of Education, Singapore; MOE2016-T2-1-119 - Ministry of Education, Singapore; National Research Foundation of Singapore (NRF) under its Campus for Research Excellence and Technological Enterprise (CREATE) program)Published versio