40 research outputs found

    Sugar Protectants Improve the Thermotolerance and Biocontrol Efficacy of the Biocontrol Yeast, Candida oleophila

    Get PDF
    A variety of sugar compounds have been used as additives to protect various biocontrol yeasts from adverse environmental stresses. However, studies on maltose and lactose as sugar protectants are limited, and their protective effect is not clear. In the present study, exposure of the biocontrol yeast Candida oleophila cells to 45°C for 10 min, while immersed in either 5 or 10% (w/v) maltose or lactose, provided a significant protective effect. The addition of maltose and lactose significantly enhanced enzyme activity and gene expression of catalase, thioredoxin reductase, and glutathione reductase, relative to cells that have been immersed in sterile distilled water (controls) exposed to 45°C. In addition, C. oleophila cells suspended in maltose and lactose solutions also exhibited higher viability and ATP levels, relative to control cells. Notably, the biocontrol efficacy of C. oleophila against postharvest diseases of apple fruit was maintained after the yeast was exposed to the high temperature treatment while immersed in maltose and lactose solutions. These results demonstrate the potential of maltose and lactose as sugar protectants for biocontrol agent against heat stress

    Experimental Study on the Status of Maize Mycotoxin Production in Farmers’ Grain Storage Silos in Northeastern China

    No full text
    The scientific rationality of farmers’ grain storage technology and equipment is crucial for the biosecurity of grain in the main grain-producing areas represented by Northeast China. In this paper, four farmer grain storage mock silos of different widths were used as a means to track an experimental cycle of grain storage. The absolute water potential of corn in all four silos at the beginning of the experiment was greater than the absolute water potential of air, prompting moisture migration from the grain interior to the air and down to about 14%. Moisture was influenced by wind direction, and moisture decreased faster with better ventilation on both sides of the grain silos. Therefore, grain silo width has a significant effect on the drying effect under naturally ventilated conditions of maize ears. This research focused on the determination and assessment of mycotoxin contamination under farmers’ storage grain conditions and analyzed the effect of silo structure on the distribution of mycotoxin contamination. When the width was too large, areas of high mycotoxin infection existed in the middle of the grain silo, and ventilation and tipping could be used to reduce the risk of toxin production. This study proved that reasonable farmer grain storage techniques and devices in Northeast China can effectively protect grain from mycotoxin contamination

    Recognizing Metro-Bus Transfers from Smart Card Data

    No full text
    10.1080/03081060.2018.1541283Transportation Planning and Technology42170-8

    Influences of Traction Load Shock on Artificial Partial Discharge Faults within Traction Transformer—Experimental Test for Pattern Recognition

    No full text
    Partial discharge (PD) measurement and its pattern recognition are vital to fault diagnosis of transformers, especially to those traction substation transformers undergoing repetitive traction load shocks. This paper presents the primary factors induced by traction load shocks including high total harmonics distortion (THD), transient voltage impulse and high-temperature rise, and their effects on the feature parameters of PD. Experimental tests are conducted on six artificial PD models with these factors introduced one by one. Results reveal that the maximum PD quantity and the PD repetitive rate are favorable to be enlarged when the oil temperature exceeds 80 °C or the THD is higher than 16% with certain orders of harmonic. The decline in PD inception voltage can mainly be attributed to the transient voltage impulse. The variation in central frequency of the fast Fourier transformation (FFT) spectra transformed from ultra-high frequency signals can mainly be attributed to high THD, especially when it exceeds 20%. The temperature rise has no significant influence on the FFT spectra; the transient voltage impulse, however, can result in a central frequency shift of the floating particle discharge. With the rapid development of high-speed railways, the study presented in this paper will be helpful for field PD detection and recognition of traction substation transformers in the future

    Pantograph–Catenary Arcing Detection Based on Electromagnetic Radiation

    No full text

    The Role of <i>BmTMED6</i> in Female Reproduction in Silkworm, <i>Bombyx mori</i>

    No full text
    Transmembrane emp24 domain (TMED) proteins have been extensively studied in mammalian embryonic development, immune regulation, and signal transduction. However, their role in insects, apart from Drosophila melanogaster, remains largely unexplored. Our previous study demonstrated the abundant expression of BmTMED6 across all stages and tissues of the silkworm. In this study, we investigate the function of BmTMED6 in reproduction. We observe significant differences in the expression of BmTMED6 between male and female silkworms, particularly in the head and fatboby, during the larval stage. Furthermore, qRT-PCR and WB analysis reveal substantial variation in BmTMED6 levels in the ovaries during pupal development, suggesting a potential association with silkworm female reproduction. We find that reducing TMED6 expression significantly decreases the number of eggs laid by female moths, leading to an accumulation of unlaid eggs in the abdomen. Moreover, downregulation of BmTMED6 leads to a decrease in the expression of BmDop2R1 and BmDop2R2, while overexpression of BmTMED6 in vitro has the opposite effect. These indicate that BmTMED6 plays a role in oviposition in female moths, potentially through the dopamine signaling pathway. This study provides a new regulatory mechanism for female reproduction in insects

    Urolithin A protects severe acute pancreatitis‐associated acute cardiac injury by regulating mitochondrial fatty acid oxidative metabolism in cardiomyocytes

    No full text
    Abstract Severe acute pancreatitis (SAP) often develops into acute cardiac injury (ACI), contributing to the high mortality of SAP. Urolithin A (UA; 3,8‐dihydroxy‐6H‐dibenzopyran‐6‐one), a natural polyphenolic compound, has been extensively studied and shown to possess significant anti‐inflammatory effects. Nevertheless, the specific effects of UA in SAP‐associated acute cardiac injury (SACI) have not been definitively elucidated. Here, we investigated the therapeutic role and mechanisms of UA in SACI using transcriptomics and untargeted metabolomics analyses in a mouse model of SACI and in vitro studies. SACI resulted in severely damaged pancreatic and cardiac tissues with myocardial mitochondrial dysfunction and mitochondrial metabolism disorders. UA significantly reduced the levels of lipase, amylase and inflammatory factors, attenuated pathological damage to pancreatic and cardiac tissues, and reduced myocardial cell apoptosis and oxidative stress in SACI. Moreover, UA increased mitochondrial membrane potential and adenosine triphosphate production and restored mitochondrial metabolism, but the efficacy of UA was weakened by the inhibition of CPT1. Therefore, UA can attenuate cardiac mitochondrial dysfunction and reduce myocardial apoptosis by restoring the balance of mitochondrial fatty acid oxidation metabolism. CPT1 may be a potential target. This study has substantial implications for advancing our understanding of the pathogenesis and drug development of SACI

    Synthesis of Metallic Nanocrystals: From Noble Metals to Base Metals

    No full text
    Metallic nanocrystals exhibit superior properties to their bulk counterparts because of the reduced sizes, diverse morphologies, and controllable exposed crystal facets. Therefore, the fabrication of metal nanocrystals and the adjustment of their properties for different applications have attracted wide attention. One of the typical examples is the fabrication of nanocrystals encased with high-index facets, and research on their magnified catalytic activities and selections. Great accomplishment has been achieved within the field of noble metals such as Pd, Pt, Ag, and Au. However, it remains challenging in the fabrication of base metal nanocrystals such as Ni, Cu, and Co with various structures, shapes, and sizes. In this paper, the synthesis of metal nanocrystals is reviewed. An introduction is briefly given to the metal nanocrystals and the importance of synthesis, and then commonly used synthesis methods for metallic nanocrystals are summarized, followed by specific examples of metal nanocrystals including noble metals, alloys, and base metals. The synthesis of base metal nanocrystals is far from satisfactory compared to the tremendous success achieved in noble metals. Afterwards, we present a discussion on specific synthesis methods suitable for base metals, including seed-mediated growth, ligand control, oriented attachment, chemical etching, and Oswald ripening, based on the comprehensive consideration of thermodynamics, kinetics, and physical restrictions. At the end, conclusions are drawn through the prospect of the future development direction

    Gut microbiota interacts with inflammatory responses in acute pancreatitis

    No full text
    Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15–20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies
    corecore