9,779 research outputs found
Measurement and Model Correlation of Specific Heat Capacity of Water-Based Nanofluids With Silica, Alumina and Copper Oxide Nanoparticles
Nanofluids are being considered for heat transfer applications. However, their thermo-physical properties are poorly known. Here we focus on nanofluid specific heat capacity. Currently, there exist two models to predict a nanofluid’s specific heat capacity as a function of nanoparticle concentration and material. Model I is a straight volume-weighted average; Model II is based on the assumption of thermal equilibrium between the particles and the surrounding fluid. These two models give significantly different predictions for a given system. Using differential scanning calorimetry, the specific heat capacities of water based silica, alumina, and copper oxide nanofluids were measured. Nanoparticle concentrations were varied between 5wt% and 50wt%. Test results were found to be in excellent agreement with Model II, while the predictions of Model I deviate very significantly from the data
A balancing act: Evidence for a strong subdominant d-wave pairing channel in
We present an analysis of the Raman spectra of optimally doped based on LDA band structure calculations and the
subsequent estimation of effective Raman vertices. Experimentally a narrow,
emergent mode appears in the () Raman spectra only below
, well into the superconducting state and at an energy below twice the
energy gap on the electron Fermi surface sheets. The Raman spectra can be
reproduced quantitatively with estimates for the magnitude and momentum space
structure of the s pairing gap on different Fermi surface sheets, as
well as the identification of the emergent sharp feature as a
Bardasis-Schrieffer exciton, formed as a Cooper pair bound state in a
subdominant channel. The binding energy of the exciton relative
to the gap edge shows that the coupling strength in this subdominant
channel is as strong as 60% of that in the dominant
channel. This result suggests that may be the dominant pairing
symmetry in Fe-based sperconductors which lack central hole bands.Comment: 10 pages, 6 Figure
Measurement and Model Validation of Nanofluid Specific Heat Capacity with Differential Scanning Calorimetry
Nanofluids are being considered for heat transfer applications; therefore it is important to know their thermophysical properties accurately. In this paper we focused on nanofluid specific heat capacity. Currently, there exist two models to predict a nanofluid specific heat capacity as a function of nanoparticle concentration and material. Model I is a straight volume-weighted average; Model II is based on the assumption of thermal equilibrium between the particles and the surrounding fluid. These two models give significantly different predictions for a given system. Using differential scanning calorimetry (DSC), a robust experimental methodology for measuring the heat capacity of fluids, the specific heat capacities of water-based silica, alumina, and copper oxide nanofluids were measured. Nanoparticle concentrations were varied between 5 wt% and 50 wt%. Test results were found to be in excellent agreement with Model II, while the predictions of Model I deviated very significantly from the data. Therefore, Model II is recommended for nanofluids
Intrinsic Percolative Superconductivity in KxFe2-ySe2 Single Crystals
Magnetic field penetration and magnetization hysteresis loops (MHLs) have
been measured in KxFe2-ySe2 single crystals. The magnetic field penetration
shows a two-step feature with a very small full-magnetic-penetration field
(Hp1= 300 Oe at 2 K), and accordingly the MHL exhibits an abnormal vanishing of
the central peak near zero field below 13 K. The width of the MHL in KxFe2-ySe2
at the same temperature is in general much smaller than that measured in the
relatives Ba0.6K0.4Fe2As2 and Ba(Fe0.92Co0.08)2As2, and the MHLs in the latter
two samples show the normal central peak near zero field. All these anomalies
found in KxFe2-ySe2 can be understood in the picture that the sample is
percolative with weakly coupled superconducting islands.Comment: 5 page, 4 figure
Raman-Scattering Detection of Nearly Degenerate -Wave and -Wave Pairing Channels in Iron-Based BaKFeAs and RbFeSe Superconductors
We show that electronic Raman scattering affords a window into the essential
properties of the pairing potential of
iron-based superconductors. In BaKFeAs we observe band
dependent energy gaps along with excitonic Bardasis-Schrieffer modes
characterizing, respectively, the dominant and subdominant pairing channel. The
symmetry of all excitons allows us to identify the subdominant
channel to originate from the interaction between the electron bands.
Consequently, the dominant channel driving superconductivity results from the
interaction between the electron and hole bands and has the full lattice
symmetry. The results in RbFeSe along with earlier ones in
Ba(FeCo)As highlight the influence of the Fermi
surface topology on the pairing interactions.Comment: 5 pages, 4 figure
Gravity and Nonequilibrium Thermodynamics of Classical Matter
Renewed interest in deriving gravity (more precisely, the Einstein equations)
from thermodynamics considerations [1, 2] is stirred up by a recent proposal
that 'gravity is an entropic force' [3] (see also [4]). Even though I find the
arguments justifying such a claim in this latest proposal rather ad hoc and
simplistic compared to the original one I would unreservedly support the call
to explore deeper the relation between gravity and thermodynamics, this having
the same spirit as my long-held view that general relativity is the
hydrodynamic limit [5, 6] of some underlying theories for the microscopic
structure of spacetime - all these proposals, together with that of [7, 8],
attest to the emergent nature of gravity [9]. In this first paper of two we set
the modest goal of studying the nonequilibrium thermodynamics of classical
matter only, bringing afore some interesting prior results, without invoking
any quantum considerations such as Bekenstein-Hawking entropy, holography or
Unruh effect. This is for the sake of understanding the nonequilibrium nature
of classical gravity which is at the root of many salient features of black
hole physics. One important property of gravitational systems, from
self-gravitating gas to black holes, is their negative heat capacity, which is
the source of many out-of-the ordinary dynamical and thermodynamic features
such as the non-existence in isolated systems of thermodynamically stable
configurations, which actually provides the condition for gravitational
stability. A related property is that, being systems with long range
interaction, they are nonextensive and relax extremely slowly towards
equilibrium. Here we explore how much of the known features of black hole
thermodynamics can be derived from this classical nonequilibrium perspective. A
sequel paper will address gravity and nonequilibrium thermodynamics of quantum
fields [10].Comment: 25 pages essay. Invited Talk at Mariofest, March 2010, Rosario,
Argentina. Festschrift to appear as an issue of IJMP
Hall Drag in Correlated Double Layer Quantum Hall Systems
We show that in the limit of zero temperature, double layer quantum Hall
systems exhibit a novel phenomena called Hall drag, namely a current driven in
one layer induces a voltage drop in the other layer, in the direction
perpendicular to the driving current. The two-by-two Hall resistivity tensor is
quantized and proportional to the matrix that describes the
topological order of the quantum Hall state, even when the matrix
contains a zero eigenvalue, in which case the Hall conductivity tensor does not
exist. Relation between the present work and previous ones is also discussed.Comment: 4 pages, 1 eps figure. Accepted in PRB, R
Multi-Agent Feedback Enabled Neural Networks for Intelligent Communications
In the intelligent communication field, deep learning (DL) has attracted much attention due to its strong fitting ability and data-driven learning capability. Compared with the typical DL feedforward network structures, an enhancement structure with direct data feedback have been studied and proved to have better performance than the feedfoward networks. However, due to the above simple feedback methods lack sufficient analysis and learning ability on the feedback data, it is inadequate to deal with more complicated nonlinear systems and therefore the performance is limited for further improvement. In this paper, a novel multi-agent feedback enabled neural network (MAFENN) framework is proposed, consisting of three fully cooperative intelligent agents, which make the framework have stronger feedback learning capabilities and more intelligence on feature abstraction, denoising or generation, etc. Furthermore, the MAFENN frame work is theoretically formulated into a three-player Feedback Stackelberg game, and the game is proved to converge to the Feedback Stackelberg equilibrium. The design of MAFENN framework and algorithm are dedicated to enhance the learning capability of the feedfoward DL networks or their variations with the simple data feedback. To verify the MAFENN framework’s feasibility in wireless communications, a multi-agent MAFENN based equalizer (MAFENN-E) is developed for wireless fading channels with inter-symbol interference (ISI). Experimental results show that when the quadrature phase-shift keying (QPSK) modulation scheme is adopted, the SER performance of our proposed method outperforms that of the traditional equalizers by about 2 dB in linear channels. When in nonlinear channels, the SER performance of our proposed method outperforms that of either traditional or DL based equalizers more significantly, which shows the effectiveness and robustness of our proposal in the complex channel environment
Flux-dynamics associated with the Second Magnetisation Peak in iron-pnictide Ba_{1-x}K_xFe_2As_2
We report on isofield magnetic relaxation data on a single crystal of
with superconducting transition temperature = 32.7 K
which exhibit the so called fish-tail effect. A surface map of the
superconducting transition temperature shows that the superconducting
properties are close to homogeneous across the sample. Magnetic relaxation
data, M(t), was used to obtain the activation energy U(M) in order to study
different vortex dynamics regimes. Results of this analysis along with time
dependent measurements as a function of field and temperature extended to the
reversible region of some M(H) curves demonstrate that the irreversibility as
well the second magnetization peak position, , are time dependent and
controlled by plastic motion of the vortex state. In the region delimited by a
characteristic field Hon (well below ), and , the vortex dynamics is
controlled by collective pinning. For fields below Hon the activation energy,
, increases with field as expected for collective pinning, but the pinning
mechanism is likely to be in the single vortex limit.Comment: 8 pages, 8 figures, one tabl
- …