
 1 Copyright © 2011 by ASME 

Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition 
IMECE2011 

November 11-17, 2011, Denver, Colorado, USA 
 
 

IMECE2011-62054 DRAFT 

MEASUREMENT AND MODEL CORRELATION OF SPECIFIC HEAT CAPACITY OF 
WATER-BASED NANOFLUIDS WITH SILICA, ALUMINA AND COPPER OXIDE 

NANOPARTICLES  
 
 

Harry O’Hanley 
Massachusetts Institute of Technology 

Cambridge, MA, USA 

Jacopo Buongiorno 
Massachusetts Institute of Technology 

Cambridge, MA, USA 
 

Thomas McKrell 
Massachusetts Institute of Technology 

Cambridge, MA, USA 

Lin-wen Hu 
Massachusetts Institute of Technology 

Cambridge, MA, USA 
 

   
 
 

ABSTRACT 
Nanofluids are being considered for heat transfer applications.  
However, their thermo-physical properties are poorly known.  
Here we focus on nanofluid specific heat capacity.  Currently, 
there exist two models to predict a nanofluid’s specific heat 
capacity as a function of nanoparticle concentration and 
material.  Model I is a straight volume-weighted average; 
Model II is based on the assumption of thermal equilibrium 
between the particles and the surrounding fluid.  These two 
models give significantly different predictions for a given 
system.  Using differential scanning calorimetry, the specific 
heat capacities of water based silica, alumina, and copper oxide 
nanofluids were measured.  Nanoparticle concentrations were 
varied between 5wt% and 50wt%.  Test results were found to 
be in excellent agreement with Model II, while the predictions 
of Model I deviate very significantly from the data.  
 
INTRODUCTION 
Recent research has indicated that dispersions of nanoparticles 
in a base fluid, known as nanofluids, can increase the boiling 
critical heat flux and overall performance of thermal systems. 
Typical nanoparticle concentrations may range from 0.01wt% 
to 50wt% and common particle materials include silica, 
alumina, copper oxide, zirconia, carbon nanotubes, etc. Water 
often serves as the base fluid, though other liquids such as 
ethylene glycol have been used [1]. 
 

As nanofluids are considered for thermal applications, it is 
necessary to be able to predict their thermo-physical properties.  
Because nanofluids were initially considered for thermal 
conductivity enhancement, this property has been extensively 
studied [2]. However, there have been fewer examinations of 
nanofluid specific heat capacity [3] [4] [5] [6]. It is the 
objective of this investigation to complement existing research 
by (i) measuring the specific heat capacity of water-based 
silica, alumina and copper oxide nanofluids, and (ii) comparing 
the predictions of two popular nanofluid specific heat capacity 
models to data. 

NOMENCLATURE 
cp,f  Specific heat capacity of base fluid (J/g-K)  
cp,nf  Specific heat capacity of nanofluid (J/g-K) 
cp,n   Specific heat capacity of nanoparticle (J/g-K) 
cp,ref   Specific heat capacity of reference (J/g-K)  
cp,sample  Specific heat capacity of sample (J/g-K) 
mn  Mass of nanoparticles (g) 
mH20 Mass of water (g) 
mref  Mass of reference (g) 
msample  Mass of sample (g) 
Qref  Heat flux into reference (Watts) 
Qsample  Heat flux into sample (Watts) 
Q0   Heat flux baseline (Watts) 
φ  Volume fraction (unitless) 
ρf  Density of basefluid (g/cm3) 
ρn  Density of nanoparticles (g/cm3) 
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ρH20  Density of water (g/cm3) 
VN  Volume of nanoparticles (cm3) 
VH20  Volume of water (cm3) 

 
 

 
SPECIFIC HEAT MODELS 
There are two specific heat models widely used in the nanofluid 
literature. Model I is similar to mixing theory for ideal gas 
mixtures [3].  It is a straight average relating nanofluid specific 
heat, cp,nf, to basefluid specific  heat, cp,f, nanoparticle specific 
heat, cp,n, and volume fraction, φ. Using these parameters, 
Model I calculates the nanofluid specific heat as, 
 

ܿ௣,௡௙ ൌ 	߮ܿ௣,௡ ൅ ሺ1 െ ߮ሻܿ௣,௙  (1) 
 
While it is simple and thus widespread in the literature, Model I 
has little theoretical justification in the context of nanofluids. 
 
Model II [3] [7] is based on the assumption of thermal 
equilibrium between the particles and the surrounding fluid.  It 
is straightforward to show that also the particle and fluid 
densities (ρn, and ρf, respectively) must affect the specific heat 
of the nanofluid, 
 

ܿ௣,௡௙ ൌ 	
ఝሺఘ௖೛ሻ೙ାሺଵି	ఝሻሺఘ௖೛ሻ೑

ఝఘ೙ାሺଵିఝሻఘ೑
  (2) 

 
A rigorous derivation of Equation (2) is presented in [8].  
 
Predictions of nanofluid specific heat capacity were made using 
both models and compared to experimental measurements. 
Water was the base fluid of all nanofluids used in this 
investigation. Therefore, handbook values of temperature-
dependent water specific heat and density were used in 
calculating theoretical nanofluid specific heat [9].  Additionally, 
the specific heat and density of the nanoparticles were assumed 
to be equal to the respective thermo-physical properties of 
particle material in bulk form.  
 
NANOFLUIDS 
The specific heat capacities of three nanofluids were analyzed: 
alumina-water (Nyacol AL20DW), silica-water (Ludox TMA 
420859), and copper oxide-water (Alfa Aesar 45407).  The 
nanofluid properties, as cited by the manufacturers, are 
presented in the table below. 
 

Nanofluid 
Particle Size (nm) or  
Surface Area (m2/g)  

pH 
Specific 
Gravity 

NYACOL 
AL20DW 

50 nm  4.0 1.19 

Ludox TMA 
420859 

140 m2/g 
4.0-
7.0 

1.227-1.244 

Alfa Aesar 
45407 

30 nm    

 

The stock nanofluids were obtained from commercial vendors, 
and diluted with de-ionized water to vary their concentrations.  
Prior to mixing, the nanofluids were manually agitated to 
ensure uniform dispersion. Dilution was performed by weight 
percent using a Mettler Toledo XS105 balance. Four unique 
concentrations were prepared for each nanofluid and are listed 
in the table below. For each concentration, two identical 
samples were prepared and tested. 
 
Table 1: Nanofluid sample concentrations 

Nanofluid 
Alumina-

water 
Silica-water 

Copper 
Oxide-water 

Conc. 1 
(stock) 

20wt% 
(6.4vol%) 

34wt% 
(19.0vol%) 

50wt% 
(13.7vol%) 

Conc. 2 
15wt% 

(4.6vol%) 
25.5wt% 

(13.5vol%) 
37.5wt% 
(8.7vol%) 

Conc. 3 
10wt% 

(2.9vol%) 
15wt% 

(8.5vol%) 
25wt% 

(5.0vol%) 

Conc. 4 
5wt% 

(1.4vol%) 
8.5wt% 

(4.1vol%) 
12.5wt% 
(2.2vol%) 

 
While nanofluids were diluted and prepared according to their 
weight fraction, calculations were performed using volume 
fraction.  Using the nanoparticle volume, Vn, and the water 
volume, VH20, the volume fraction can be calculated as, 
 

߮ ൌ
௏೙
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    (3) 

 
Substituting in nanoparticle mass, mn, and density ρn, and water 
mass, mH20, and density, ρH20, Equation (3) can be rewritten as, 
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   (4) 

 
Equation (4) can be used to determine the nanoparticle volume 
fraction of nanofluid concentrations created by dilution with 
de-ionized water.  
 
MEASUREMENT METHOD 
A heat-flux type differential scanning calorimeter (TA 
Instruments Q2000) was used to measure the nanofluid specific 
heat capacities. The differential scanning calorimeter (DSC) 
measures the heat flux into a sample as a function of 
temperature during a user prescribed heating regime. It 
accomplishes this by comparing the heat flux into a pan 
containing the sample with the heat flux into an empty pan. 
Hermetically sealed aluminum pans (TA Instruments) were 
used. 
 
The classical three-step DSC procedure was followed to 
measure specific heat capacity [10] [11].  Additionally, testing 
procedures adhered to protocols set forth in the ASTM Standard 
Test Method for Determining Specific Heat Capacity by 
Differential Scanning Calorimetry (E 1269-05).   
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