33 research outputs found
Acoustic emission source location method and experimental verification for structures containing unknown empty areas
Acoustic emission (AE) localization plays an important role in the prediction and control of potential hazardous sources in complex structures. However, existing location methods have less discussion on the presence of unknown empty areas. This paper proposes an AE source location method for structures containing unknown empty areas (SUEA). Firstly, this method identifies the shape, size, and location of empty areas in the unknown region by exciting the active AE sources and using the collected AE arrivals. Then, the unknown AE source can be located considering the identified empty areas. The lead break experiments were performed to verify the effectiveness and accuracy of the proposed method. Five specimens were selected containing empty areas with different positions, shapes, and sizes. Results show the average location accuracy of the SUEA increased by 78% compared to the results of the existing method. It can provide a more accurate solution for locating AE sources in complex structures containing unknown empty areas such as tunnels, bridges, railroads, and caves in practical engineering
Epigenetic modification and inheritance in sexual reversal of fish
Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model—a marine fish that has both ZW chromosomal GSD and temperature-dependent ESD—we investigated the role of DNA methylation in transition from GSD to ESD. Comparative analysis of the gonadal DNA methylomes of pseudomale, female, and normal male fish revealed that genes in the sex determination pathways are the major targets of substantial methylation modification during sexual reversal. Methylation modification in pseudomales is globally inherited in their ZW offspring, which can naturally develop into pseudomales without temperature incubation. Transcriptome analysis revealed that dosage compensation occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudomale testes, achieving equal expression level in normal male testes. In contrast, female-specific W chromosomal genes are suppressed in pseudomales by methylation regulation. We conclude that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish. We also offer the first clues on the mechanisms behind gene dosage balancing in an organism that undergoes sexual reversal. Finally, we suggest a causal link between the bias sex chromosome assortment in the offspring of a pseudomale family and the transgenerational epigenetic inheritance of sexual reversal in tongue sole fish
Comparative transcriptome reveal the potential adaptive evolutionary genes in Andrias davidianus
Abstract To search the evidence of molecular evolution mechanism for aquatic and cave habitat in Andrias davidianus, the evolution analysis was carried out among several species transcriptome data. The transcriptome data of Notophthalmus viridescens, Xenopus tropicalis, Cynops pyrrhogaster, Hynobius chinensis and A. davidianus were obtained from the Genbank and reassembled except Xenopus tropicalis. The BLAST search of transcriptome data obtained 1244 single-copy orthologous genes among five species. A phylogenetic tree showed A. davidianus to have the closest relationship to H. chinensis. Fourteen positively selected genes were detected in A. davidianus and N. vridescens group and fifteen in A. davidianus and H. chinensis group. Five genes were shared in the both groups which involved in the immune system, suggesting that A. davidianus adaptation to an aquatic and cave environment required rapid evolution of the immune system compared to N. viridescens and H. chinensis
Regulatory mechanism of LncRNAs in gonadal differentiation of hermaphroditic fish, Monopterus albus
Abstract Background Monopterus albus is a hermaphroditic fish with sex reversal from ovaries to testes via the ovotestes in the process of gonadal development, but the molecular mechanism of the sex reversal was unknown. Methods We produced transcriptomes containing mRNAs and lncRNAs in the crucial stages of the gonad, including the ovary, ovotestis and testis. The expression of the crucial lncRNAs and their target genes was detected using qRT‒PCR and in situ hybridization. The methylation level and activity of the lncRNA promoter were analysed by applying bisulfite sequencing PCR and dual-luciferase reporter assays, respectively. Results This effort revealed that gonadal development was a dynamic expression change. Regulatory networks of lncRNAs and their target genes were constructed through integrated analysis of lncRNA and mRNA data. The expression and DNA methylation of the lncRNAs MSTRG.38036 and MSTRG.12998 and their target genes Psmβ8 and Ptk2β were detected in developing gonads and sex reversal gonads. The results showed that lncRNAs and their target genes exhibited consistent expression profiles and that the DNA methylation levels were negatively regulated lncRNA expression. Furthermore, we found that Ptk2β probably regulates cyp19a1 expression via the Ptk2β/EGFR/STAT3 pathway to reprogram sex differentiation. Conclusions This study provides novel insight from lncRNA to explore the potential molecular mechanism by which DNA methylation regulates lncRNA expression to facilitate target gene transcription to reprogram sex differentiation in M. albus, which will also enrich the sex differentiation mechanism of teleosts
Recommended from our members
Catadioptric freeform optical system design for LED off-axis road illumination applications
The aim of this paper is to develop a new composite structure of catadioptric optical system containing both freeform refractive surface and freeform total internal reflective (TIR) surface for LED road illumination applications. The role of freeform refractive part is to generate the shifted general rectangular illumination pattern to optimally match the shape of the road surface. The application of TIR mechanism is aimed to control the stray light in the sidewalk direction of the road luminaire and maximize the efficient energy efficiency. In this paper, we use the "double pole" ray mapping technique to design the refractive optical surface and the theta-phi coordinate ray mapping technique to derive the freeform TIR surface. The simulation shows that the novel catadioptric design has relatively high collection efficiency, thus high average illuminance level inside the effective illumination area. This lens also has good control of stray light on the backside of the road luminaire. (c) 2017 Optical Society of America under the terms of the OSA Open Access Publishing AgreementWuhan Science and Technology Bureau [2017010201010110]; Huazhong University of Science and Technology [2017KFYXJJ026]Open access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Study on microstructure evolution and failure behavior of Ni3Al-based single crystal superalloy joints brazed with Ni-based filler
The microstructural characteristics of brazing seams significantly influence the mechanical properties of brazed joints. In this study, a novel Ni3Al-based single crystal superalloy(Alloy 1) with high Mo content was brazed with a Ni–B–Si–Ti filler. The evolution of microstructure and mechanical properties of brazed joints were investigated after thermal exposure at 1000 °C up to 300h. The brazed joint was mainly composed of the athermally solidified zone (ASZ), isothermal solidification zone (ISZ), diffusion affected zone (DAZ), and base metal (BM). As the increase of thermal exposure time, the tensile strength of the joint at 980 °C decreases from 625 MPa at 0h of thermal exposure to 443 MPa after 300h of thermal exposure. It is suggested that as the duration of thermal exposure increases, the skeleton phases gradually aggregate at the ASZ/ISZ interface, reducing the relative barrier effect of the skeleton in ASZ. Simultaneously, the ASZ/ISZ interface becomes smoother over time, which in turn leads to rapid crack propagation
Additional file 2: of Comparative transcriptome reveal the potential adaptive evolutionary genes in Andrias davidianus
Table S1. Orthologs gene under positive selection among species. (DOCX 18 kb
Additional file 1: of Comparative transcriptome reveal the potential adaptive evolutionary genes in Andrias davidianus
Figure S1. Phylogenetic tree of selected species based on 1244 single-copy orthologous genes. (TIFF 212 kb
Table1_Potential antagonistic relationship of fgf9 and rspo1 genes in WNT4 pathway to regulate the sex differentiation in Chinese giant salamander (Andrias davidianus).DOC
Farmed chinese giant salamander (Andrias davidianus) was an important distinctive economically amphibian that exhibited male-biased sexual size dimorphism. Fgf9 and rspo1 genes antagonize each other in Wnt4 signal pathway to regulate mammalian gonadal differentiation has been demonstrated. However, their expression profile and function in A. davidianus are unclear. In this study, we firstly characterized fgf9 and rspo1 genes expression in developing gonad. Results showed that fgf9 expression level was higher in testes than in ovaries and increased from 1 to 6 years while rspo1 expression was higher in ovaries than in testes. In situ hybridization assay showed that both fgf9 and rspo1 genes expressed at 62 dpf in undifferentiated gonad, and fgf9 gene was mainly expressed in spermatogonia and sertoli cells in testis while strong positive signal of rspo1 was detected in granular cell in ovary. During sex-reversal, fgf9 expression was significantly higher in reversed testes and normal testes than in ovaries, and opposite expression pattern was detected for rspo1. When FH535 was used to inhibit Wnt/β-catenin pathway, expression of rspo1, wnt4 and β-catenin was down-regulated. Conversely, expression of fgf9, dmrt1, ftz-f1 and cyp17 were up-regulated. Furthermore, when rspo1 and fgf9 were knocked down using RNAi technology, respectively. We observed that female biased genes were down regulated in ovary primordial cells after rspo1 was knocked down, while the opposite expression profile was observed in testis primordial cells after fgf9 was knocked down. These results suggested that fgf9 and rspo1 played an antagonistic role to regulate sex differentiation in the process of the gonadal development and provided a foundation for further functional characterizations. The data also provided basic information for genome editing breeding to improve the Chinese giant salamander farming industry.</p
Image2_Potential antagonistic relationship of fgf9 and rspo1 genes in WNT4 pathway to regulate the sex differentiation in Chinese giant salamander (Andrias davidianus).TIF
Farmed chinese giant salamander (Andrias davidianus) was an important distinctive economically amphibian that exhibited male-biased sexual size dimorphism. Fgf9 and rspo1 genes antagonize each other in Wnt4 signal pathway to regulate mammalian gonadal differentiation has been demonstrated. However, their expression profile and function in A. davidianus are unclear. In this study, we firstly characterized fgf9 and rspo1 genes expression in developing gonad. Results showed that fgf9 expression level was higher in testes than in ovaries and increased from 1 to 6 years while rspo1 expression was higher in ovaries than in testes. In situ hybridization assay showed that both fgf9 and rspo1 genes expressed at 62 dpf in undifferentiated gonad, and fgf9 gene was mainly expressed in spermatogonia and sertoli cells in testis while strong positive signal of rspo1 was detected in granular cell in ovary. During sex-reversal, fgf9 expression was significantly higher in reversed testes and normal testes than in ovaries, and opposite expression pattern was detected for rspo1. When FH535 was used to inhibit Wnt/β-catenin pathway, expression of rspo1, wnt4 and β-catenin was down-regulated. Conversely, expression of fgf9, dmrt1, ftz-f1 and cyp17 were up-regulated. Furthermore, when rspo1 and fgf9 were knocked down using RNAi technology, respectively. We observed that female biased genes were down regulated in ovary primordial cells after rspo1 was knocked down, while the opposite expression profile was observed in testis primordial cells after fgf9 was knocked down. These results suggested that fgf9 and rspo1 played an antagonistic role to regulate sex differentiation in the process of the gonadal development and provided a foundation for further functional characterizations. The data also provided basic information for genome editing breeding to improve the Chinese giant salamander farming industry.</p