51,451 research outputs found

    Effect and Compensation of Timing Jitter in Through-Wall Human Indication via Impulse Through-Wall Radar

    Get PDF
    Impulse through-wall radar (TWR) is considered as one of preferred choices for through-wall human indication due to its good penetration and high range resolution. Large bandwidth available for impulse TWR results in high range resolution, but also brings an atypical adversity issue not substantial in narrowband radars — high timing jitter effect, caused by the non-ideal sampling clock at the receiver. The fact that impulse TWR employs very narrow pulses makes little jitter inaccuracy large enough to destroy the signal correlation property and then degrade clutter suppression performance. In this paper, we focus on the timing jitter impact on clutter suppression in through-wall human indication via impulse TWR. We setup a simple timing jitter model and propose a criterion namely average range profile (ARP) contrast is to evaluate the jitter level. To combat timing jitter, we also develop an effective compensation method based on local ARP contrast maximization. The proposed method can be implemented pulse by pulse followed by exponential average background subtraction algorithm to mitigate clutters. Through-wall experiments demonstrate that the proposed method can dramatically improve through-wall human indication performance

    Measurement of the c-axis optical reflectance of AFe2_2As2_2 (A=Ba, Sr) single crystals: Evidence of different mechanisms for the formation of two energy gaps

    Full text link
    We present the c-axis optical reflectance measurement on single crystals of BaFe2_2As2_2 and SrFe2_2As2_2, the parent compounds of FeAs based superconductors. Different from the ab-plane optical response where two distinct energy gaps were observed in the SDW state, only the smaller energy gap could be seen clearly for \textbf{E}\parallelc-axis. The very pronounced energy gap structure seen at a higher energy scale for \textbf{E}\parallelab-plane is almost invisible. We propose a novel picture for the band structure evolution across the SDW transition and suggest different driving mechanisms for the formation of the two energy gaps.Comment: 4 page

    The Sources and Sustainability of China's Economic Growth

    Get PDF
    China’s economic transformation is proceeding at different rates across different regions and sectors, and China’s most advanced regional sector, coastal industry, still lags well behind the world’s technology frontier. This paper explores the implications of these internal and international productivity disparities for China’s ability to sustain rapid economic growth. When China’s GDP catches up to U.S. GDP, Chinese living standards still will be only one quarter those of the United States. If, at that time, productivity in some major regions and sectors remains far below the average, coastal industry may have to achieve productivity that approaches or even exceeds U.S. productivity. Coastal industry’s productivity growth is then likely to slow substantially, impeding China’s overall economic growth. The paper examines the need for policies that facilitate economic integration across regions, to enable the lagging regions and sectors to catch up to coastal industry, and the prospects for continued institutional reform.China, macroeconomics, economic growth, China GDP

    The Universal Edge Physics in Fractional Quantum Hall Liquids

    Full text link
    The chiral Luttinger liquid theory for fractional quantum Hall edge transport predicts universal power-law behavior in the current-voltage (II-VV) characteristics for electrons tunneling into the edge. However, it has not been unambiguously observed in experiments in two-dimensional electron gases based on GaAs/GaAlAs heterostructures or quantum wells. One plausible cause is the fractional quantum Hall edge reconstruction, which introduces non-chiral edge modes. The coupling between counterpropagating edge modes can modify the exponent of the II-VV characteristics. By comparing the ν=1/3\nu=1/3 fractional quantum Hall states in modulation-doped semiconductor devices and in graphene devices, we show that the graphene-based systems have an experimental accessible parameter region to avoid the edge reconstruction, which is suitable for the exploration of the universal edge tunneling exponent predicted by the chiral Luttinger liquid theory.Comment: 7 pages, 6 figure

    R&D and Technology Transfer: Firm-Level Evidence from Chinese Industry

    Full text link
    The capacity of developing economies to narrow the gap in living standards with the OECD nations depends critically on their ability to imitate and innovate new technologies. Toward this end, developing economies have access to three avenues of technological advance: technology transfer, domestic R&D, and foreign direct investment. This paper examines the contributions of each of these avenues, as well as their interactions, to productivity and knowledge production within Chinese industry. Based on a large data set for China’s large and medium-size enterprises, the estimation results show that technology transfer – whether domestic or foreign – affects productivity only through its interactions with in-house R&D. Foreign direct investment does not appear to facilitate the adoption of market-mediated foreign technology transfer. Firms wishing to produce patentable knowledge do not benefit from technology transfer; patentable knowledge is created exclusively through in-house R&D operations.http://deepblue.lib.umich.edu/bitstream/2027.42/39968/3/wp582.pd

    Multiple phase transitions in single-crystalline Na1δ_{1-\delta}FeAs

    Full text link
    Specific heat, resistivity, susceptibility and Hall coefficient measurements were performed on high-quality single crystalline Na1δ_{1-\delta}FeAs. This compound is found to undergo three successive phase transitions at around 52, 41, and 23 K, which correspond to structural, magnetic and superconducting transitions, respectively. The Hall effect result indicates the development of energy gap at low temperature due to the occurrence of spin-density-wave instability. Our results provide direct experimental evidence of the magnetic ordering in the nearly stoichiometric NaFeAs.Comment: 4 pages, 4 figure

    A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks

    Get PDF
    Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally, conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002 and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140
    corecore