41 research outputs found

    Virus-Free and Live-Cell Visualizing SARS-CoV-2 Cell Entry for Studies of Neutralizing Antibodies and Compound Inhibitors

    Get PDF
    新型冠状病毒SARS-CoV-2在全球蔓延,给全球公共卫生带来严重威胁。快速研制疫苗、抗体和治疗药物成为科学界面临的重大挑战。由于SARS-CoV-2的高度传染性,采用病毒感染模型进行中和抗体及小分子抑制剂的药效评估需要在高等级生物安全实验室中进行,且常需要数天时间才能完成检测,限制了抗体和药物筛选的效率。发展快速、可视、不依赖于活病毒的新冠病毒入胞检测探针和细胞模型,对于加速新冠病毒抗体和药物的研究有重要意义。夏宁邵教授团队通过CHO真核表达系统高效表达制备出C端融合抗酸荧光蛋白Gamillus的重组新冠病毒spike蛋白STG。STG经SEC分子筛和冷冻电镜确认呈现与天然病毒刺突高度相似的三聚体结构,且与ACE2有很高的亲和力(18.2nM)。STG具备良好的细胞相容性和荧光性质,研究者进一步开发了可定量测定感染恢复期血清、疫苗免疫血清中和抗体(入胞阻断抗体)水平的CSBT检测方法。除了抗体检测评估方面的应用外,该研究发展的探针和模型还可用于筛选分析抑制新冠病毒入胞及胞内转运的小分子化合物。 我校博士后张雅丽,博士生王邵娟、巫洋涛,博士后侯汪衡、袁伦志和深圳市第三人民医院沈晨光博士为共同第一作者。厦门大学夏宁邵教授、袁权教授、程通教授为该论文共同通讯作者。The ongoing corona virus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system,a genetically engineered sensor of fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process is developed.In ACE2-expressing cells, it is found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.This study was supported by National Natural Science Foundation of China (81993149041 for N.X.; 81902057 for Y.Z.; 81871316 and U1905205 for Q.Y.), the National Science and Technology Major Project of Infectious Diseases (No. 2017ZX10304402‐002‐003 for T.C. and No. 2017ZX10202203‐009 for Q.Y.), the National Science and Technology Major Projects for Major New Drugs Innovation and Development (No. 2018ZX09711003‐005‐003 for T.C.), the Science and Technology Major Project of Fujian (2020YZ014001), the Science and Technology Major Project of Xiamen (3502Z2020YJ01), and the Guangdong Basic and Applied Basic Research Foundation (2020A1515010368 for C.S.). 该研究得到了国家自然科学基金、传染病防治国家科技重大专项、福建省应急科技攻关项目和厦门应急科技攻关项目的支持

    Unified probabilistic gas and power flow

    No full text
    Abstract The natural gas system and electricity system are coupled tightly by gas turbines in an integrated energy system. The uncertainties of one system will not only threaten its own safe operation but also be likely to have a significant impact on the other. Therefore, it is necessary to study the variation of state variables when random fluctuations emerge in the coupled system. In this paper, a multi-slack-bus model is proposed to calculate the power and gas flow in the coupled system. A unified probabilistic power and gas flow calculation, in which the cumulant method and Gram–Charlier expansion are applied, is first presented to obtain the distribution of state variables after considering the effects of uncertain factors. When the variation range of random factors is too large, a new method of piecewise linearization is put forward to achieve a better fitting precision of probability distribution. Compared to the Monte Carlo method, the proposed method can reduce computation time greatly while reaching a satisfactory accuracy. The validity of the proposed methods is verified in a coupled system that consists of a 15-node natural gas system and the IEEE case24 power system

    Anti-Tumor Effects of an Oncolytic Adenovirus Expressing Hemagglutinin-Neuraminidase of Newcastle Disease Virus in Vitro and in Vivo

    No full text
    Oncolytic virotherapy has been an attractive drug platform for targeted therapy of cancer over the past few years. Viral vectors can be used to target and lyse cancer cells, but achieving good efficacy and specificity with this treatment approach is a major challenge. Here, we assessed the ability of a novel dual-specific anti-tumor oncolytic adenovirus, expressing the hemagglutinin-neuraminidase (HN) gene from the Newcastle disease virus under the human telomerase reverse transcriptase (hTERT) promoter (Ad-hTERTp-E1a-HN), to inhibit esophageal cancer EC-109 cells in culture and to reduce tumor burden in xenografted BALB/c nude mice. In vitro, infection with Ad-hTERT-E1a-HN could inhibit the growth of EC-109 cells significantly and also protect normal human liver cell line L02 from growth suppression in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Ad-hTERT-E1a-HN also effectively and selectively decreased the sialic acid level on EC-109 cells, but not on L02 cells. Furthermore, Ad-hTERT-E1a-HN was shown to induce the apoptosis pathway via acridine orange and ethidium bromide staining (AO/EB staining), increase reactive oxygen species (ROS), reduce mitochondrial membrane potential and release cytochrome c. In vivo, xenografted BALB/c nude mice were treated via intratumoral or intravenous injections of Ad-hTERT-E1a-HN. Although both treatments showed an obvious suppression in tumor volume, only Ad-hTERT-E1a-HN delivered via intratumoral injection elicited a complete response to treatment. These results reinforced previous findings and highlighted the potential therapeutic application of Ad-hTERT-E1a-HN for treatment of esophageal cancer in clinical trials

    Balance between a higher degree of heterosis and increased reproductive isolation: a strategic design for breeding inter-subspecific hybrid rice.

    No full text
    The application of heterosis (hybrid vigor) has brought great success to plant breeding, particularly of hybrid rice, achieving significant yield increases. Attempts to explore the heterosis of inter-subspecific hybrids between indica and japonica rice, which result in even greater yield increases, have greatly increased in the past decades. However, because of the reduced seed setting rate in F1 hybrids as a result of increased reproductive isolation, the application of inter-subspecific hybrids in rice has slowed. Understanding the balance between heterosis and the reproductive isolation of inter-subspecific hybrids will facilitate the strategic design of inter-subspecific hybrid breeding. In this study, five indica and seven japonica rice varieties were chosen as the parental lines of a complete diallel mating design. Data from six group traits from all of the hybrids and inbred lines were collected. We found that the grain weight per plant, grain number per panicle, tiller per plant, thousand grain weight and plant height, which reflected increased heterosis, were associated with the genetic divergence index (GDI) of the parents. Meanwhile, owing to the reduced seed setting rate, which was also associated with the parents' GDI, the grain production of the hybrids was negatively affected. After analyzing the relationships between the GDI of indica-japonica parents and the grain weight per plant of the F1 hybrids, an ideal GDI value (0.37) for the two indica-japonica parents that could provide an optimal balance between the inter-subspecific heterosis and reproductive isolation was proposed. Our findings will help in the strategic design of an inter-subspecific hybrid rice breeding program by identifying the ideal indica and japonica parents for a hybrid combination to achieve hybrid rice with an optimal yield. This strategic design of an inter-subspecific hybrid rice breeding program will be time saving and cost effective

    Ionic/Electronic Dual‐Conductor Coating Layer Fabrication Enabling High‐Performance Silicon Anode

    No full text
    Silicon (Si) has received special attention from both scientific research and corporate development for overcoming the current energy density bottleneck. However, the severe volume change and violent interfacial reaction diminish the full benefits of Si material and hamper its direct commercial utilization. Particle pulverization and the companied ionic/electronic isolation are regarded as the intrinsic reason for performance attenuation. Hence, a strategy that can maintain both electronic and ionic conductance on Si anode during the electrochemical process is of great significant for performance improvement and future commercial promotion. Accordingly, an ionic/electronic dual‐conductor coating layer fabrication route is done by in situ building Li4SiO4 fast ion conductor coating layer and implanting electron conduction network, labeled as Si@Li4SiO4/amorphous carbon (C)/carbon nanotubes (CNTs). Notably, the Si@Li4SiO4/C/CNT electrode delivers excellent long‐term cycling stability and prominent rate capability. These results demonstrate that the in situ‐formed fast ionic conductor coating layer facilitates the rapid Li+ diffusion, and the 3D network structure constructed by CNTs and amorphous carbon (polyvinylpyrrolidone‐derived carbon) effectively reinforce the structural stability and keep the electrical connection for the electrode. This study provides an ionic/electronic dual‐conductor coating design concept for Si‐based anode materials

    Diffusion along perivascular spaces as marker for impairment of glymphatic system in Parkinson’s disease

    No full text
    Abstract The brain glymphatic system is involved in the clearance of misfolding α-synuclein, the impaired glymphatic system may contribute to the progression of Parkinson’s disease (PD). We aimed to analyze the diffusion tensor image along the perivascular space (DTI-ALPS) and perivascular space (PVS) burden to reveal the relationship between the glymphatic system and PD. A cross-sectional study using a 7 T MRI of 76 PD patients and 48 controls was performed to evaluate the brain’s glymphatic system. The DTI-ALPS and PVS burden in basal ganglia were calculated. Correlation analyses were conducted between DTI-ALPS, PVS burden and clinical features. We detected lower DTI-ALPS in the PD subgroup relative to controls, and the differences were more pronounced in patients with Hoehn & Yahr stage greater than two. The decreased DTI-ALPS was only evident in the left hemisphere in patients in the early stage but involved both hemispheres in more advanced PD patients. Decreased DTI-ALPS were also correlated with longer disease duration, higher Unified Parkinson’s Disease Rating Scale motor score (UPDRS III) and UPDRS total scores, as well as higher levodopa equivalent daily dose. Moreover, the decreased DTI-ALPS correlated with increased PVS burden, and both indexes correlated with PD disease severity. This study demonstrated decreased DTI-ALPS in PD, which might initiate from the left hemisphere and progressively involve right hemisphere with the disease progression. Decreased DTI-ALPS index correlated with increased PVS burden, indicating that both metrics could provide supporting evidence of an impaired glymphatic system. MRI evaluation of the PVS burden and diffusion along PVS are potential imaging biomarkers for PD for disease progression
    corecore