98 research outputs found

    Influence of mycotoxin zearalenone and its derivatives (alpha and beta zearalenol) on apoptosis and proliferation of cultured granulosa cells from equine ovaries

    Get PDF
    BACKGROUND: The mycotoxin zearalenone (ZEA) and its derivatives, alpha and beta-zearalenol (alpha and beta-ZOL), synthesized by genera Fusarium, often occur as contaminants in cereal grains and animal feeds. The importance of ZEA on reproductive disorders is well known in domestic animals species, particularly in swine and cattle. In the horse, limited data are available to date on the influence of dietary exposure to ZEA on reproductive health and on its in vitro effects on reproductive cells. The aim of this study was to evaluate the effects of ZEA and its derivatives, alpha and beta-ZOL, on granulosa cells (GCs) from the ovaries of cycling mares. METHODS: The cell proliferation was evaluated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test after 3 days exposure at different concentrations of ZEA and its derivatives (from 1 Ă— 10-7 to 0.1 microM). The apoptosis induction was evaluated after 1 day exposure, by DNA analysis using flow cytometry. RESULTS: An increase in cell proliferation with respect to the control was observed in the presence of ZEA at 1 Ă— 10-3 and 1 Ă— 10-4 microM and apoptosis was induced by all mycotoxins at different concentrations. CONCLUSION: The simultaneous presence of apoptosis and proliferation in GC cultures treated with zearalenones could indicate that these mycotoxins could be effective in inducing follicular atresia. These effects of zearalenones may result from both direct interaction with oestrogen-receptors as well as interaction with the enzymes 3alpha (beta)-hydroxysteroid dehydrogenase (HSD), involved in the synthesis and metabolism of endogenous steroid hormones. These cellular disturbances, described for the first time in equine GCs cultured in vitro, could be hypothesized as referred to reproductive failures of unknown ethiology in the mare

    Lactational coumestrol exposure increases ovarian apoptosis in adult rats

    Get PDF
    This study is the first to examine the increased apoptosis in the adult rat ovary after lactational exposure to coumestrol (COU), a potent phytoestrogen. Lactating dams were gavaged at doses of 0.01, 0.1, 1, and 10 mg/kg COU during the lactation period and the reproductive effects of female pups were investigated in young adults. Rats were sacrificed at postnatal days (PND) 81–84. Ovarian weights were reduced significantly at 0.1 and 1.0 mg/kg COU. The reduction in the ovarian weight occurred in parallel with an increase in the apoptosis at PND 135–140. A marked dose-dependent increase in the expressions of active caspase-3 and -7 was observed in ovarian granulosa cells. Immunostaining for active caspase-3 and the TUNEL staining of apoptotic cells were also increased in ovaries exposed to COU in a dose-dependent manner. These results suggest new sights into the effect of lactational exposure to COU on the female reproductive health

    XII ème CONGRES DE LA SALF TOURS, 8–9 décembre 1995

    No full text

    Metabolism of the environmental toxicant benzo( a

    No full text

    Regulation of Ovarian Steroidogenesis in the Little Skate (Raja erinacea)

    No full text

    Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low density lipoprotein class A modules

    No full text
    The relaxin and insulin-like peptide 3 receptors, LGR7 and LGR8, respectively, are unique members of the leucine-rich repeat-containing G-protein-coupled receptor (LGR) family, because they possess an N-terminal motif with homology to the low density lipoprotein class A (LDLa) modules. By characterizing several LGR7 and LGR8 splice variants, we have revealed that the LDLa module directs ligand-activated cAMP signaling. The LGR8-short variant encodes an LGR8 receptor lacking the LDLa module, whereas LGR7-truncate, LGR7-truncate-2, and LGR7-truncate-3 all encode truncated secreted proteins retaining the LGR7 LDLa module. LGR8-short and an engineered LGR7 variant missing its LDLa module, LGR7-short, bound to their respective ligands with high affinity but lost their ability to signal via stimulation of intracellular cAMP accumulation. Conversely, secreted LGR7-truncate protein with the LDLa module was able to block relaxin-induced LGR7 cAMP signaling and did so without compromising the ability of LGR7 to bind to relaxin or be expressed on the cell membrane. Although the LDLa module of LGR7 was N-glycosylated at position Asn-14, an LGR7 N14Q mutant retained relaxin binding affinity and cAMP signaling, implying that glycosylation is not essential for optimal LDLa function. Using real-time PCR, the expression of mouse LGR7-truncate was detected to be high in, and specific to, the uterus of pregnant mice. The differential expression and evolutionary conservation of LGR7-truncate further suggests that it may also play an important role in vivo. This study highlights the essential role of the LDLa module in LGR7 and LGR8 function and introduces a novel model of GPCR regulation
    • …
    corecore