321 research outputs found

    Cell-free Circulating miRNA Biomarkers in Cancer.

    Get PDF
    Considerable attention and an enormous amount of resources have been dedicated to cancer biomarker discovery and validation. However, there are still a limited number of useful biomarkers available for clinical use. An ideal biomarker should be easily assayed with minimally invasive medical procedures but possess high sensitivity and specificity. Commonly used circulating biomarkers are proteins in serum, most of which require labor-intensive analysis hindered by low sensitivity in early tumor detection. Since the deregulation of microRNA (miRNA) is associated with cancer development and progression, profiling of circulating miRNAs has been used in a number of studies to identify novel minimally invasive miRNA biomarkers. In this review, we discuss the origin of the circulating cell-free miRNAs and their carriers in blood. We summarize the clinical use and function of potentially promising miRNA biomarkers in a variety of different cancers, along with their downstream target genes in tumor initiation and development. Additionally, we analyze some technical challenges in applying miRNA biomarkers to clinical practice

    M-SpeechCLIP: Leveraging Large-Scale, Pre-Trained Models for Multilingual Speech to Image Retrieval

    Full text link
    This work investigates the use of large-scale, pre-trained models (CLIP and HuBERT) for multilingual speech-image retrieval. For non-English speech-image retrieval, we outperform the current state-of-the-art performance by a wide margin when training separate models for each language, and show that a single model which processes speech in all three languages still achieves retrieval scores comparable with the prior state-of-the-art. We identify key differences in model behavior and performance between English and non-English settings, presumably attributable to the English-only pre-training of CLIP and HuBERT. Finally, we show that our models can be used for mono- and cross-lingual speech-text retrieval and cross-lingual speech-speech retrieval, despite never having seen any parallel speech-text or speech-speech data during training.Comment: Submitted to ICASSP 202

    Time-Domain Multi-modal Bone/air Conducted Speech Enhancement

    Full text link
    Previous studies have proven that integrating video signals, as a complementary modality, can facilitate improved performance for speech enhancement (SE). However, video clips usually contain large amounts of data and pose a high cost in terms of computational resources and thus may complicate the SE system. As an alternative source, a bone-conducted speech signal has a moderate data size while manifesting speech-phoneme structures, and thus complements its air-conducted counterpart. In this study, we propose a novel multi-modal SE structure in the time domain that leverages bone- and air-conducted signals. In addition, we examine two ensemble-learning-based strategies, early fusion (EF) and late fusion (LF), to integrate the two types of speech signals, and adopt a deep learning-based fully convolutional network to conduct the enhancement. The experiment results on the Mandarin corpus indicate that this newly presented multi-modal (integrating bone- and air-conducted signals) SE structure significantly outperforms the single-source SE counterparts (with a bone- or air-conducted signal only) in various speech evaluation metrics. In addition, the adoption of an LF strategy other than an EF in this novel SE multi-modal structure achieves better results.Comment: multi-modal, bone/air-conducted signals, speech enhancement, fully convolutional networ

    implications for health and disease

    Get PDF
    Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease
    • …
    corecore