93 research outputs found

    Nano-Scale Rare Earth Distribution in Fly Ash Derived from the Combustion of the Fire Clay Coal, Kentucky

    Get PDF
    Fly ash from the combustion of eastern Kentucky Fire Clay coal in a southeastern United States pulverized-coal power plant was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). TEM combined with elemental analysis via energy dispersive X-ray spectroscopy (EDS) showed that rare earth elements (REE; specifically, La, Ce, Nd, Pr, and Sm) were distributed within glassy particles. In certain cases, the REE were accompanied by phosphorous, suggesting a monazite or similar mineral form. However, the electron diffraction patterns of apparent phosphate minerals were not definitive, and P-lean regions of the glass consisted of amorphous phases. Therefore, the distribution of the REE in the fly ash seemed to be in the form of TEM-visible nano-scale crystalline minerals, with additional distributions corresponding to overlapping ultra-fine minerals and even true atomic dispersion within the fly ash glass

    Residential Mercury Contamination in Adobe Brick Homes in Huancavelica, Peru

    Get PDF
    This is the first study of adobe brick contamination anywhere in the world. Huancavelica, Peru is the site of historic cinnabar refining and one of the most mercury (Hg) contaminated urban areas in the world. Over 80% of homes in Huancavelica are constructed with adobe bricks made from Hg contaminated soil. In this study we measured total Hg concentrations in adobe brick, dirt floor, surface dust, and air samples from the interior of 60 adobe brick houses located in four neighborhoods. Concentrations of total Hg in adobe bricks, dirt floors, and surface dust ranged from 8.00 to 1070 µg/g, 3.06 to 926 µg/g, and 0.02 to 9.69 µg/wipe, respectively, with statistically significant differences between the four neighborhoods. Concentrations of Hg in adobe brick and dirt floor samples in Huancavelica were orders of magnitude higher than in Ayacucho, a non-mining town in Peru. A strong correlation exists between total Hg concentrations in adobe bricks and dirt floors which confirms that adobe bricks were being made on-site and not purchased from an off-site source. A strong correlation between surface dust and adobe bricks and dirt floors indicates that walls and floors serve as indoor sources of Hg contamination. Elemental Hg vapor concentrations were below detection (<0.5 µg/m3) in most homes; however in homes with detectable levels, concentrations up to 5.1 µg/m3 were observed. No statistically significant differences in Hg vapor measurements were observed between neighborhoods. This study demonstrates that building materials used widely in developing communities, such as adobe bricks, may be a substantial source of residential Hg exposure in silver or gold refining communities where Hg is produced or used for amalgamation in artisanal gold production

    CoNaMad-Cohorte de Nacimiento de Madre de Dios/Madre de Dios Birth Cohort to Study Effects of in-utero Trace Metals Exposure in the Southern Peruvian Amazon.

    Get PDF
    Background: In-utero exposure to mercury and other trace metals pose a significant threat to child health and development, but exposures and health impacts in artisanal and small-scale gold mining (ASGM) environments are poorly defined. Objectives: We describe the CONAMAD study design, a prospective birth cohort consisting of multiparous women (18 and over) living in rural and peri-urban Peruvian Amazon communities exposed to ASGM. Methods: Pregnant women are enrolled from health posts across four zones of Madre de Dios, Peru. Data are collected at enrollment, childbirth, and (planned) 36-48 months. At enrollment, hair samples for mercury assessment, demographic and clinical data are obtained. At birth, we obtain venous and cord blood, placenta, hair, toenails, and saliva. Findings: Two hundred seventy mothers were enrolled at an average 20 weeks gestational age with no differences in maternal characteristics across zones. Two hundred fifteen mothers were successfully followed at birth. We obtained 214 maternal and cord blood samples, 211 maternal and 212 infant hair samples, 212 placenta samples, 210 infant saliva samples, and 214 infant dried blood spots. Data collected will allow for testing our primary hypotheses of maternal malnutrition modifying ratios of cord:maternal blood total mercury (tHg), cord blood:maternal hair tHg, and infant:maternal hair tHg, and whether chemical mixtures (Hg, Pb, Cd) have synergistic effects on infant neurodevelopment. Conclusions: CONAMAD is designed to collect and store samples for future processing and hypothesis testing associated with in-utero mercury exposure and child development. We have completed the exposure assessments and will conduct a follow-up of mothers to evaluate early child development outcomes, including developmental delay and growth. These data offer insights into disease mechanisms, exposure prevention, and policy guidance for countries where ASGM is prevalent
    corecore