27,468 research outputs found

    Space-time translational gauge identities in Abelian Yang-Mills gravity

    Full text link
    We derive and calculate the space-time translational gauge identities in quantum Yang-Mills gravity with a general class of gauge conditions involving two arbitrary parameters. These identities of the Abelian group of translation are a generalization of Ward-Takahasi-Fradkin identities and important for general discussions of possible renormalization of Yang-Mills gravity with translational gauge symmetry. The gauge identities in Yang-Mills gravity with a general class of gauge conditions are substantiated by explicit calculations.Comment: 15 pages. To be published in The European Physical Journal - Plus (2012

    Experimental study of ion heating and acceleration during magnetic reconnection

    Get PDF
    Ion heating and acceleration has been studied in the well-characterized reconnection layer of the Magnetic Reconnection Experiment [M. Yamada , Phys. Plasmas 4, 1936 (1997)]. Ion temperature in the layer rises substantially during null-helicity reconnection in which reconnecting field lines are anti-parallel. The plasma outflow is sub-Alfvenic due to a downstream back pressure. An ion energy balance calculation based on the data and including classical viscous heating indicates that ions are heated largely via nonclassical mechanisms. The T-i rise is much smaller during co-helicity reconnection in which field lines reconnect obliquely. This is consistent with a slower reconnection rate and a smaller resistivity enhancement over the Spitzer value. These observations show that nonclassical dissipation mechanisms can play an important role both in heating the ions and in facilitating the reconnection process

    Finiteness properties of cubulated groups

    Full text link
    We give a generalized and self-contained account of Haglund-Paulin's wallspaces and Sageev's construction of the CAT(0) cube complex dual to a wallspace. We examine criteria on a wallspace leading to finiteness properties of its dual cube complex. Our discussion is aimed at readers wishing to apply these methods to produce actions of groups on cube complexes and understand their nature. We develop the wallspace ideas in a level of generality that facilitates their application. Our main result describes the structure of dual cube complexes arising from relatively hyperbolic groups. Let H_1,...,H_s be relatively quasiconvex codimension-1 subgroups of a group G that is hyperbolic relative to P_1,...,P_r. We prove that G acts relatively cocompactly on the associated dual CAT(0) cube complex C. This generalizes Sageev's result that C is cocompact when G is hyperbolic. When P_1,...,P_r are abelian, we show that the dual CAT(0) cube complex C has a G-cocompact CAT(0) truncation.Comment: 58 pages, 12 figures. Version 3: Revisions and slightly improved results in Sections 7 and 8. Several theorem numbers have changed from the previous versio

    Grand unification through gravitational effects

    Get PDF
    We systematically study the unification of gauge couplings in the presence of (one or more) effective dimension-5 operators cHGG/4MPl, induced into the grand unified theory by gravitational interactions at the Planck scale MPl. These operators alter the usual condition for gauge coupling unification, which can, depending on the Higgs content H and vacuum expectation value, result in unification at scales MX significantly different than naively expected. We find non-supersymmetric models of SU(5) and SO(10) unification, with natural Wilson coefficients c, that easily satisfy the constraints from proton decay. Furthermore, gauge coupling unification at scales as high as the Planck scale seems feasible, possibly hinting at simultaneous unification of gauge and gravitational interactions. In the Appendix we work out the group theoretical aspects of this scenario for SU(5) and SO(10) unified groups in detail; this material is also relevant in the analysis of non-universal gaugino masses obtained from supergravity.Comment: 27 pages, 5 figures, 8 tables, 1 appendix, revtex; v2: introduction and conclusion expanded, references added, minor changes, version published in PR

    Holographic dark energy model with non-minimal coupling

    Full text link
    We find that holographic dark energy model with non-minimally coupled scalar field gives rise to an accelerating universe by choosing Hubble scale as IR cutoff. We show viable range of a non-minimal coupling parameter in the framework of this model.Comment: 7 pages, no figure, corrected some typos, to be published in Europhys. Let

    Collapsed 2-Dimensional Polymers on a Cylinder

    Full text link
    Single partially confined collapsed polymers are studied in two dimensions. They are described by self-avoiding random walks with nearest-neighbour attractions below the Θ\Theta-point, on the surface of an infinitely long cylinder. For the simulations we employ the pruned-enriched-Rosenbluth method (PERM). The same model had previously been studied for free polymers (infinite lattice, no boundaries) and for polymers on finite lattices with periodic boundary conditions. We verify the previous estimates of bulk densities, bulk free energies, and surface tensions. We find that the free energy of a polymer with fixed length NN has, for NN\to \infty, a minimum at a finite cylinder radius RR^* which diverges as TTθT\to T_\theta. Furthermore, the surface tension vanishes roughly as (TθT)α(T_\theta-T)^\alpha for TTθT\to T_\theta with α1.7\alpha\approx 1.7. The density in the interior of a globule scales as (TθT)β(T_\theta-T)^\beta with β0.32\beta \approx 0.32.Comment: 4 pages, 8 figure

    Fundamental limits to optical response in absorptive systems

    Get PDF
    At visible and infrared frequencies, metals show tantalizing promise for strong subwavelength resonances, but material loss typically dampens the response. We derive fundamental limits to the optical response of absorptive systems, bounding the largest enhancements possible given intrinsic material losses. Through basic conservation-of-energy principles, we derive geometry-independent limits to per-volume absorption and scattering rates, and to local-density-of-states enhancements that represent the power radiated or expended by a dipole near a material body. We provide examples of structures that approach our absorption and scattering limits at any frequency, by contrast, we find that common "antenna" structures fall far short of our radiative LDOS bounds, suggesting the possibility for significant further improvement. Underlying the limits is a simple metric, χ2/Imχ|\chi|^2 / \operatorname{Im} \chi for a material with susceptibility χ\chi, that enables broad technological evaluation of lossy materials across optical frequencies.Comment: 21 pages and 6 figures (excluding appendices, references

    Management of patients with chronic kidney disease

    Get PDF
    Co-operation between primary healthcare workers (clinic staff and general practitioners) and nephrologists is essential and the ability to refer patients timeously should be on a pre-negotiated and organised basis. This article deals with these aspects, including follow-up guidelines and management and treatment strategies, including lifestyle changes where indicated and referral for end-stage renal failure, i.e. for dialysis and transplantation

    Structure of bottle-brush brushes under good solvent conditions. A molecular dynamics study

    Full text link
    We report a simulation study for bottle-brush polymers grafted on a rigid backbone. Using a standard coarse-grained bead-spring model extensive molecular dynamics simulations for such macromolecules under good solvent conditions are performed. We consider a broad range of parameters and present numerical results for the monomer density profile, density of the untethered ends of the grafted flexible backbones and the correlation function describing the range that neighboring grafted bottle-brushes are affected by the presence of the others due to the excluded volume interactions. The end beads of the flexible backbones of the grafted bottle-brushes do not access the region close to the rigid backbone due to the presence of the side chains of the grafted bottle-brush polymers, which stretch further the chains in the radial directions. Although a number of different correlation lengths exist as a result of the complex structure of these macromolecules, their properties can be tuned with high accuracy in good solvents. Moreover, qualitative differences with "typical" bottle-brushes are discussed. Our results provide a first approach to characterizing such complex macromolecules with a standard bead spring model.Comment: To appear in Journal of Physics Condensed Matter (2011

    Erratum : Squeezing and entanglement delay using slow light

    Get PDF
    An inconsistency was found in the equations used to calculate the variance of the quadrature fluctuations of a field propagating through a medium demonstrating electromagnetically induced transparency (EIT). The decoherence term used in our original paper introduces inconsistency under weak probe approximation. In this erratum we give the Bloch equations with the correct dephasing terms. The conclusions of the original paper remain the same. Both entanglement and squeezing can be delayed and preserved using EIT without adding noise when the decoherence rate is small.Comment: 1 page, no figur
    corecore