19,475 research outputs found
A new VLSI architecture for a single-chip-type Reed-Solomon decoder
A new very large scale integration (VLSI) architecture for implementing Reed-Solomon (RS) decoders that can correct both errors and erasures is described. This new architecture implements a Reed-Solomon decoder by using replication of a single VLSI chip. It is anticipated that this single chip type RS decoder approach will save substantial development and production costs. It is estimated that reduction in cost by a factor of four is possible with this new architecture. Furthermore, this Reed-Solomon decoder is programmable between 8 bit and 10 bit symbol sizes. Therefore, both an 8 bit Consultative Committee for Space Data Systems (CCSDS) RS decoder and a 10 bit decoder are obtained at the same time, and when concatenated with a (15,1/6) Viterbi decoder, provide an additional 2.1-dB coding gain
A VLSI architecture of a binary updown counter
A pipeline binary updown counter with many bits is developed which can be used in a variety of applications. One such application includes the design of a digital correlator for very long baseline interferometry (VLBI). The advantage of the presently conceived approach over the previous techniques is that the number of logic operations involved in the design of the binary updown counter can be reduced substantially. The architecture design using these methods is regular, simple, expandable and, therefore, naturally suitable for VLSI implementation
A VLSI single chip (255,223) Reed-Solomon encoder with interleaver
A single-chip implementation of a Reed-Solomon encoder with interleaving capability is described. The code used was adapted by the CCSDS (Consulative Committee on Space Data Systems). It forms the outer code of the NASA standard concatenated coding system which includes a convolutional inner code of rate 1/2 and constraint length 7. The architecture, leading to this single VLSI chip design, makes use of a bit-serial finite field multiplication algorithm due to E.R. Berlekamp
A simplified procedure for correcting both errors and erasures of a Reed-Solomon code using the Euclidean algorithm
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code
A VLSI pipeline design of a fast prime factor DFT on a finite field
A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). A pipeline structure is used to implement this prime factor DFT over GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented
A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes
It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation
A single chip VLSI Reed-Solomon decoder
A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous design is replaced by a time domain algorithm. A new architecture that implements such an algorithm permits efficient pipeline processing with minimum circuitry. A systolic array is also developed to perform erasure corrections in the new design. A modified form of Euclid's algorithm is implemented by a new architecture that maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and a significant reduction in silicon area, therefore making it possible to build a pipeline (31,15)RS decoder on a single VLSI chip
The spectral dimension of random brushes
We consider a class of random graphs, called random brushes, which are
constructed by adding linear graphs of random lengths to the vertices of Z^d
viewed as a graph. We prove that for d=2 all random brushes have spectral
dimension d_s=2. For d=3 we have {5\over 2}\leq d_s\leq 3 and for d\geq 4 we
have 3\leq d_s\leq d.Comment: 15 pages, 1 figur
The Low Energy Behavior of some Models with Dynamical Supersymmetry Breaking
We study supersymmetric SU(5) chiral gauge theories with 2 fields in the 10
representation, fields in the representation and fields
in the 5 representation, for . With a suitable superpotential,
supersymmetry is shown to be broken dynamically for each of these values of
. We analyze the calculable limit for the model with in detail,
and determine the low energy effective sigma model in this case. For we
find the quantum moduli space, and for we construct the s--confining
potential.Comment: 16 page
- …