1,794 research outputs found

    Integration of GaInP/GaAs heterojunction bipolar transistors and high electron mobility transistors

    Get PDF
    Integration of carbon-doped GaInP/GaAs heterojunction bipolar transistors (HBT's) and high electron mobility transistors (HEMT's) is demonstrated by growing an HBT on the top of a HEMT. A current gain of 60. a cutoff frequency of 59 GHz and a maximum oscillation frequency of 68 GHz were obtained for a 5 × 15 μm 2 self-aligned HBT. The HEMT with a gate length of 1.5 μm has a transconductance of 210 mS/mm, a cutoff frequency of 9 GHz and a maximum oscillation frequency of 22 GHz. It is shown that the GaInP/GaAs HBT on the HEMT is the simple Bi-FET tecnology suitable for microwave and mixed single applications.published_or_final_versio

    Nandrolone abuse aggravates septic shock

    Get PDF

    CCl4-doped semi-insulating InP as a buffer layer in GaInAs/InP high electron mobility transistors

    Get PDF
    The application of CCl4-doped semi-insulating InP as a buffer layer in a pseudomorphic Ga0.2In0.8P/Ga0.47In0.53As/InP high electron mobility transistor (HEMT) grown by metalorganic chemical vapor deposition is reported. This Al-free InP-base HEMT with a gate length of 1.3 μm has extrinsic transconductances of 420 and 610 mS/mm at 300 and 77 K, respectively. A cutoff frequency of 15 GHz and a maximum oscillation frequency of 40 GHz are obtained. The results demonstrate the CCl4-doped semi-insulating InP is a promising buffer layer for InP-based HEMT. © 1996 American Institute of Physics.published_or_final_versio

    A high-frequency GaInP/GaAs heterojunction bipolar transistor with reduced base-collector capacitance using a selective buried sub-collector

    Get PDF
    A C-doped GaInP/GaAs HBT using a selective buried sub-cellular has been fabricated by two growth steps. The device was fabricated with minimum overlap of the extrinsic base reduced to about half of that of an HBT without selective buried sub-collector while the base resistance remains unchanged. A current gain of 35, f T of 50 GHz and f max of 140 GHz are obtained with this technology.published_or_final_versio

    ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition

    Get PDF
    Performance of dye-sensitized solar cells (DSSCs) based on ZnO nanorods prepared by hydrothermal and vapor-deposition methods has been investigated. In spite of their inferior optical properties, DSSCs based on hydrothermally grown rods exhibit higher power conversion efficiency, which can be attributed to the higher dye adsorption. Hydrothermally grown and vapor deposited nanorods also exhibit different dependence of photovoltaic performance on the annealing conditions of the rods, indicating significant effect of the native defects on the achievable photocurrent and power conversion efficiency. Efficiency of 0.22% is obtained for both as grown hydrothermally grown nanorods and vapor deposited nanorods annealed in oxygen at 200 °C. © 2008 American Institute of Physics.published_or_final_versio

    Fabrication and characteristics of a GaInP/GaAs heterojunction bipolar transistor using a selective buried sub-collector

    Get PDF
    A C-doped GaInP/GaAs heterojunction bipolar transistor (HBT) with a selective buried sub-collector has been fabricated by two growth steps. The active HBT region was made on the selective buried sub-collector layer with minimum overlap of the extrinsic base and the sub-collector region resulting in substantial reduction of the base-collector capacitance. The experiment shows that the base-collector capacitance is reduced to about half of that of a conventional HBT while the base resistance remains unchanged resulting in a 40-50% increase in the maximum oscillation frequency. Both DC and RF characteristics are investigated and compared with a conventional HBT. A current gain of 40 cutoff frequency of 50 GHz and maximum oscillation frequency of 140 GHz were obtained for the GaInP/GaAs HBT. It is demonstrated that the selective buried sub-collector provides an effective means for enhancing RF performance of an HBT. © 1997 IEEE.published_or_final_versio

    Dye-sensitized solar cells using ZnO tetrapods

    Get PDF
    One dimensional (1D) ZnO nanostructures are of interest for applications in dye-sensitized solar cells (DSSCs) since they exhibit significantly improved electron transport compared to that in porous films. However, 1D nanostructures also have a significantly lower surface area than the porous films. Thus, the achieved solar cell efficiencies are typically much lower in spite of the improved charge transport. In this work, we investigated DSSCs based on ZnO tetrapods to achieve an increased surface area compared to that of 1D nanostructures. The cell performance as a function of the tetrapod film thickness and the dye used was studied. To further increase the surface area, mixed morphologies (tetrapods with nanoparticles) were also investigated. Under optimal conditions, an AM 1.5 power conversion efficiency of ∼1.2% was achieved. © 2008 American Institute of Physics.published_or_final_versio

    High efficiency, low offset voltage InGaP/GaAs power heterostructure-emitter bipolar transistors with advanced thermal management

    Get PDF
    High efficiency, low offset voltage InGaP/GaAs power heterostructure-emitter bipolar transistors (HEBTs) have been demonstrated. The large signal performance of the HEBTs is characterized. Output power of 0.25 W with power added efficiency (PAE) of 63.5% at 1.9 GHz has been achieved from a 26-finger HEBT with total emitter area of 873.6 μm2. Output power of 1.0 W with PAE of 63% has been obtained from the composition of four above-mentioned power cells at the optimum conditions of impedance matching. The thermal performance of HEBT is presented and the results show better thermal management than conventional HBT. The experimental results demonstrate good power performance and capability of HEBTs.published_or_final_versio

    Temperature dependence of current gain of GalnP/GaAs heteroj unction and heterostructure-emitter bipolar transistors

    Get PDF
    The temperature effect on current gain is presented for GalnP/GaAs heterojunction and heterostructure-emitter bipolar transistors (HBT's and HEBT's). Experimental results showed that the current gain of the HEBT increases with the increase of temperature in the temperature range of 25-125 °C and decreases slightly at temperatures above 150 °C. The smaller the collector current, the larger is the positive differential temperature coefficient. At high current levels, the current gain dependence on temperature is significantly reduced. On the other hand, a large negative coefficient is observed in the HBT in all current range. This finding indicates that the HEBT is a better candidate than the HBT for power devices. © 1999 IEEE Publisher Item Identifier S 0018-9383(99)00257-9.published_or_final_versio

    Carbon-doped GaInP/GaAs heterojunction bipolar transistors grown by metalorganic chemical vapor deposition using nitrogen as the carrier gas

    Get PDF
    The use of nitrogen as the carrier gas in metalorganic chemical vapor deposition (MOCVD) for the growth of carbon-doped GaInP/GaAs heterojunction bipolar transistors (HBTs) is reported. The material quality grown using a nitrogen carrier gas is the same as that of using a hydrogen carrier gas. High carbon doping and hole concentrations of 3 × 1020 and 2 × 1020 cm-3 in GaAs were obtained. The fabricated HBTs showed very good DC and RF performances indicating that nitrogen can be a promising carrier gas for MOCVD growth. © 1997 American Institute of Physics.published_or_final_versio
    • …
    corecore