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Temperature Dependence of Current Gain
of GaInP/GaAs Heterojunction and

Heterostructure-Emitter Bipolar Transistors
Edward S. Yang,Fellow, IEEE,Yue-Fei Yang,Member, IEEE,Chung-Chi Hsu, Hai-Jiang Ou, and H. B. Lo

Abstract—The temperature effect on current gain is presented
for GaInP/GaAs heterojunction and heterostructure-emitter
bipolar transistors (HBT’s and HEBT’s). Experimental results
showed that the current gain of the HEBT increases with
the increase of temperature in the temperature range of
25–125�C and decreases slightly at temperatures above 150�C.
The smaller the collector current, the larger is the positive
differential temperature coefficient. At high current levels, the
current gain dependence on temperature is significantly reduced.
On the other hand, a large negative coefficient is observed in the
HBT in all current range. This finding indicates that the HEBT
is a better candidate than the HBT for power devices.

I. INTRODUCTION

I N A BIPOLAR transistor, the current gain has a definite
temperature coefficient. When current crowding exists in a

device, the temperature dependence can provide an electrical-
thermal positive feedback loop giving rise to thermal runaway
for a positive coefficient and current collapse for a negative
coefficient. To avoid the catastrophic effect one could attempt
to eliminate current crowding or making the current insensitive
to temperature variation. Current crowding may come from
the nonuniformity of material, device structure or the lateral
field established by the base current. For the latter, a heavy
base doping such as in a typical heterojunction bipolar tran-
sistor (HBT) produces a small and negligible lateral potential
drop in the active base. Although the difference between
fingers is unavoidable, the temperature coefficient, however,
may be controllable by manipulation of the heterojunction.
This paper reports some experimental results using a GaInP
heterostructure-emitter to make the gain less sensitive to
temperature variation.

In a power GaAs HBT the current gain decreases with
the increase of junction temperature which results in a neg-
ative differential resistance and current collapse in the
curves [1], [2]. Although GaInP/GaAs power HBT’s have
less temperature dependence on current gain than AlGaAs
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HBT’s [3], there is still observable gain degradation and
negative differential resistance, especially for the semi-ordered
GaInP/GaAs HBT’s [4]. The main reason of gain degradation
in HBT’s is believed to be the low valence band offset
at the heterojunction [3]. It is based on the assumption that
diffusion dominates the hole current injected from the base to
the emitter. If, however, the mechanism of the hole current
is controlled by thermionic emission rather than diffusion,
the temperature dependence of current gain will be modified
significantly.

The heterostructure-emitter bipolar transistor (HEBT) with
the separation of electron injection and hole confinement [5]
has been proposed by taking advantage of both the hetero-
junction and homojunction. It can effectively eliminate the
emitter potential spike and offers a low offset voltage [6].
The heterostructure-emitter can also accommodate the base
dopant outdiffusion which increases the device life time [7].
We have also found that the HEBT provides better current gain
uniformity [8]. Moreover, the hole current injected from base
to emitter is likely to be dominated by thermionic emission
current at high temperature similar to the poly-Si emitter
[9]. Since the thermionic emission current has a temperature
dependence of instead of in a diffusion current
(excluding the exponential term contained in both) [10], the
current gain should be less dependent on the junction temper-
ature. In this paper, we present the experimental results of the
temperature dependence on the current gain of GaInP/GaAs
HBT’s and HEBT’s.

II. EXPERIMENT

GaInP/GaAs HEBT’s were grown by MOCVD on a SI
GaAs substrate. The HEBT structure consists of a 5000Å
GaAs subcollector layer cm a 5000 Å
GaAs collector layer cm a 1000Å GaAs
base layer cm a 150Å GaAs emitter layer

cm a 500 Å GaInP confinement layer
cm a 1500 Å GaAs emitter cap layer
cm and a 600Å graded In Ga As

from 0 to 0.5) contact layer cm
A GaInP/GaAs HBT without emitter setback layer was also
fabricated for comparison. Si and C were used as n- and p-type
dopants, respectively.

HEBT’s were fabricated using the conventional mesa struc-
ture described in [8]. A thin depleted GaInP ledge was
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Fig. 1. Current gain versus collector current for the GaInP/GaAs HEBT with
emitter size of 3� 16 �m2 at various substrate temperatures.

employed as a passivation layer for the extrinsic base surface
to reduce the surface recombination current. A large emit-
ter size of 40 100 m was used to further cut down
the periphery effect on the current gain. After the HEBT’s
were fabricated, the devices were packaged in a chip carrier.
Gummel plots at a base-collector bias of 0 V were measured
at the temperature range from 25 to 175C by putting the
sample in a temperature-controlled chamber. Because the base-
collector was biased at 0 V, the device junction temperature
was assumed to be the same as the substrate temperature,

III. RESULTS AND DISCUSSION

The fabricated HEBT has a common emitter current gain
of 35 at room temperature. RF devices with a small emitter

have a cutoff frequency of 45 GHz and maximum oscillation
frequency of 80 GHz.

Fig. 1 shows the current gain versus the collector current
for the GaInP/GaAs HEBT at various substrate temperatures.
The emitter size is 3 16 m . As shown, the current gain
changes only slightly with temperature for the wide range of
collector current. The increase of current gain with temperature
is also observed. For clarity, Fig. 2 shows the current gain,
normalized by its value at room temperature, as a function of
the substrate temperature for the HEBT at collector current of
1 10 , 1 10 , and 1 10 A. It is noted that the
current gain increases with the increase of temperature at
below 100 C and starts to decrease at 100–150 C
depending on the collector current. The smaller the collector
current, the more the current gain increases with temperature.

In comparison, Fig. 3 shows the current gain versus col-
lector current of a GaInP/GaAs HBT for the temperature
range of 25–200 C. The HBT has a similar structure and
was grown under the same conditions as that of the HEBT
except without an emitter setback layer. Some of the features
in Fig. 3 are replotted in Fig. 4 for of 10 , 10 , and
10 A, respectively. It is noted that the current gain of the

Fig. 2. Current gain versus substrate temperature for the GaInP/GaAs HEBT
at collector current of 1� 10�5, 1 � 10�3, and 1� 10�2 A.

Fig. 3. Current gain versus collector current for the GaInP/GaAs HBT with
emitter size of 3� 16 �m2 at various substrate temperatures.

HBT’s has a negative temperature coefficient as defined by
the slope of the curves. This coefficient is current dependent
but is negative in all cases. On the other hand, the current
gain of the HEBT shown in Fig. 2 shows a positive slope at
low temperatures and it levels off before turning to a negative
slope. As a comparison, the gain variation is within 10% at

A for the HEBT in Fig. 2 and a factor of two (i.e.,
100%) for the HBT in Fig. 3. The contrast is even greater for
a lower collector current.

For the HBT, the temperature coefficient is not far from
being a constant and a thermal-electrical feedback factor can
be defined [11]. However, the same coefficient in an HEBT
is highly nonlinear as it changes from positive to negative.
This nonlinearity makes it difficult to define a feedback factor.
Nevertheless, there is no question as to the less sensitive
temperature dependence in a HEBT. The smaller coefficient
gives rise to a smaller thermal-electrical feedback and a less
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Fig. 4. Current gain versus substrate temperature for the GaInP/GaAs HBT
at collector current of 1� 10�5, 1 � 10�4, and 1� 10�3 A.

likelihood of current collapse in the device. The current gain
of the HBT decreases with increasing temperature in the entire
current range. The lower the collector current, the more is the
current gain reduction. As can be seen in Fig. 3, the current
gain decreases in magnitude by a factor of 20 atof 10
A but only 2 at 10 A, respectively, for the temperature
range of 25–200 C.

From the data shown in Figs. 2 and 4, the contrast of
the thermal effect on the current gain between the HEBT
and HBT is very striking. In general, current crowding will
produce a thermal gradient within the transistor. However, if
the current gain were independent of temperature, there would
not be a feedback mechanism to produce a catastrophic effect.
In reality, when the temperature coefficient of the gain is
positive, thermal runaway will take place as in power silicon
BJT. On the other hand, a negative temperature coefficient
gives rise to gain depression thus the collapse of the collector
current in the plot of the HBT. By assuming that
the heterostructure-emitter is similar to the poly-Si emitter,
the hole current from the base to emitter is dominated by
thermionic emission at high temperature [9]. The temperature
dependence of the diffusion current is described by
[10, Ch. 2, Eq. (46)]. The term describes the temperature
effect of the ratio of the diffusion coefficient and diffusion
length that is negligible in most cases. Ignoring the exponential

term which cancels out, the thermionic emission current
has a temperature dependence of and the diffusion current
has a temperature dependence of Hence, the current
gain is less dependent on the junction temperature when the
hole current is dominated by thermionic emission. A detailed
analysis is too long to include here and will be published in
a separate paper in the future.

One advantage of the current gain increase with temperature
is for power applications. The negative differential resistance
and current collapse in HBT’s are commonly observed as due
to the self-heating effect. In our devices, we have obtained
a positive differential resistance in the curve. This
positive differential resistance results directly from the positive

temperature coefficient of the current gain. However, the
current gain decrease at high temperature brings back the
negative differential resistance at high current and high bias.
This effect prevents the device from thermal runaway.

In summary, we have reported a significant difference in the
thermal coefficient of the current gain for GaInP/GaAs HEBT
and a HBT. It is showed that the current gain for the HEBT is
controllable by design and can be much less dependent on the
junction temperature. A positive differential resistance in
curve is observed corresponding to the current gain increase
with temperature. The results suggest that the HEBT structure
can overcome the problem of current collapse and is a better
candidate than the HBT for power devices.
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