15,400 research outputs found

    Nonconservative higher-order hydrodynamic modulation instability

    Full text link
    The modulation instability (MI) is a universal mechanism that is responsible for the disintegration of weakly nonlinear narrow-banded wave fields and the emergence of localized extreme events in dispersive media. The instability dynamics is naturally triggered, when unstable energy side-bands located around the main energy peak are excited and then follow an exponential growth law. As a consequence of four wave mixing effect, these primary side-bands generate an infinite number of additional side-bands, forming a triangular side-band cascade. After saturation, it is expected that the system experiences a return to initial conditions followed by a spectral recurrence dynamics. Much complex nonlinear wave field motion is expected, when the secondary or successive side-band pair that are created are also located in the finite instability gain range around the main carrier frequency peak. This latter process is referred to as higher-order MI. We report a numerical and experimental study that confirm observation of higher-order MI dynamics in water waves. Furthermore, we show that the presence of weak dissipation may counter-intuitively enhance wave focusing in the second recurrent cycle of wave amplification. The interdisciplinary weakly nonlinear approach in addressing the evolution of unstable nonlinear waves dynamics may find significant resonance in other nonlinear dispersive media in physics, such as optics, solids, superfluids and plasma

    Recycle-GAN: Unsupervised Video Retargeting

    Full text link
    We introduce a data-driven approach for unsupervised video retargeting that translates content from one domain to another while preserving the style native to a domain, i.e., if contents of John Oliver's speech were to be transferred to Stephen Colbert, then the generated content/speech should be in Stephen Colbert's style. Our approach combines both spatial and temporal information along with adversarial losses for content translation and style preservation. In this work, we first study the advantages of using spatiotemporal constraints over spatial constraints for effective retargeting. We then demonstrate the proposed approach for the problems where information in both space and time matters such as face-to-face translation, flower-to-flower, wind and cloud synthesis, sunrise and sunset.Comment: ECCV 2018; Please refer to project webpage for videos - http://www.cs.cmu.edu/~aayushb/Recycle-GA

    Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    Get PDF
    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred

    Quantum study of information delay in electromagetically induced transparency

    Get PDF
    Using electromagnetically induced transparency (EIT), it is possible to delay and store light in atomic ensembles. Theoretical modelling and recent experiments have suggested that the EIT storage mechanism can be used as a memory for quantum information. We present experiments that quantify the noise performance of an EIT system for conjugate amplitude and phase quadratures. It is shown that our EIT system adds excess noise to the delayed light that has not hitherto been predicted by published theoretical modelling. In analogy with other continuous-variable quantum information systems, the performance of our EIT system is characterised in terms of conditional variance and signal transfer.Comment: 4 pages, 4 figure

    On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun

    Get PDF
    Measurements of the various plasma configurations produced by a planar magnetized coaxial gun provide insight into the magnetic topology evolution resulting from magnetic helicity injection. Important features of the experiments are a very simple coaxial gun design so that all observed geometrical complexity is due to the intrinsic physical dynamics rather than the source shape and use of a fast multiple-frame digital camera which provides direct imaging of topologically complex shapes and dynamics. Three key experimental findings were obtained: (1) formation of an axial collimated jet [Hsu and Bellan, Mon. Not. R. Astron. Soc. 334, 257 (2002)] that is consistent with a magnetohydrodynamic description of astrophysical jets, (2) identification of the kink instability when this jet satisfies the Kruskal-Shafranov limit, and (3) the nonlinear properties of the kink instability providing a conversion of toroidal to poloidal flux as required for spheromak formation by a coaxial magnetized source [Hsu and Bellan, Phys. Rev. Lett. 90, 215002 (2003)]. A new interpretation is proposed for how the n=1 central column instability provides flux amplification during spheromak formation and sustainment, and it is shown that jet collimation can occur within one rotation of the background poloidal field.Comment: Physics of Plasmas (accepted

    Convergence towards an asymptotic shape in first-passage percolation on cone-like subgraphs of the integer lattice

    Full text link
    In first-passage percolation on the integer lattice, the Shape Theorem provides precise conditions for convergence of the set of sites reachable within a given time from the origin, once rescaled, to a compact and convex limiting shape. Here, we address convergence towards an asymptotic shape for cone-like subgraphs of the Zd\Z^d lattice, where d≥2d\ge2. In particular, we identify the asymptotic shapes associated to these graphs as restrictions of the asymptotic shape of the lattice. Apart from providing necessary and sufficient conditions for LpL^p- and almost sure convergence towards this shape, we investigate also stronger notions such as complete convergence and stability with respect to a dynamically evolving environment.Comment: 23 pages. Together with arXiv:1305.6260, this version replaces the old. The main results have been strengthened and an earlier error in the statement corrected. To appear in J. Theoret. Proba

    Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region

    Get PDF
    MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa

    Cosmological Rescaling through Warped Space

    Full text link
    We discuss a scenario where at least part of the homogeneity on a brane world can be directly related to the hierarchy problem through warped space. We study the dynamics of an anti-D3-brane moving toward the infrared cut-off of a warped background. After a region described by the DBI action, the self-energy of the anti-D3-brane will dominate over the background. Then the world-volume scale of the anti-D3-brane is no longer comoving with the background geometry. After it settles down in the infrared end, the world-volume inhomogeneity will appear, to a Poincare observer, to be stretched by an exponentially large ratio. This ratio is close to that of the hierarchy problem between the gravitational and electroweak scales.Comment: 12 pages, 2 figures; v2, PRD version, comments and references adde
    • …
    corecore