643 research outputs found

    Assessing the Effects of Acupuncture by Comparing Needling the Hegu Acupoint and Needling Nearby Nonacupoints by Spectral Analysis of Microcirculatory Laser Doppler Signals

    Get PDF
    We aimed to assess the effects of acupuncture by analyzing the frequency content of skin blood-flow signals simultaneously recorded at the Hegu acupoint and two nearby nonacupoints following acupuncture stimulation (AS). Laser Doppler flowmetry (LDF) signals were measured in male healthy volunteers in two groups of experiments: needling the Hegu acupoint (n = 13) and needling a nearby nonacupoint (control experiment; n = 10). Each experiment involved recording a 20 min baseline-data sequence and two sets of effects data recorded 0–20 and 50–70 min after stopping AS. Wavelet transform with Morlet mother wavelet was applied to the measured LDF signals. Needling the Hegu acupoint significantly increased the blood flow, significantly decreased the relative energy contribution at 0.02–0.06 Hz and significantly increased the relative energy contribution at 0.4–1.6 Hz at Hegu, but induced no significant changes at the nonacupoints. Also, needling a nearby nonacupoint had no effect in any band at any site. This is the first time that spectral analysis has been used to investigate the microcirculatory blood-flow responses induced by AS, and has revealed possible differences in sympathetic nerve activities between needling the Hegu acupoint and its nearby nonacupoint. One possible weakness of the present design is that different De-Qi feelings following AS could lead to nonblind experimental setup, which may bias the comparison between needling Hegu and its nearby nonacupoint. Our results suggest that the described noninvasive method can be used to evaluate sympathetic control of peripheral vascular activity, which might be useful for studying the therapeutic effects of AS

    Observation of Bulk Fermi Arc and Polarization Half Charge from Paired Exceptional Points

    Full text link
    The ideas of topology have found tremendous success in Hermitian physical systems, but even richer properties exist in the more general non-Hermitian framework. Here, we theoretically propose and experimentally demonstrate a new topologically-protected bulk Fermi arc which---unlike the well-known surface Fermi arcs arising from Weyl points in Hermitian systems---develops from non-Hermitian radiative losses in photonic crystal slabs. Moreover, we discover half-integer topological charges in the polarization of far-field radiation around the Fermi arc. We show that both phenomena are direct consequences of the non-Hermitian topological properties of exceptional points, where resonances coincide in their frequencies and linewidths. Our work connects the fields of topological photonics, non-Hermitian physics and singular optics, and paves the way for future exploration of non-Hermitian topological systems.Comment: 7 pages, 4 figure

    Terrestrial water storage anomalies emphasize interannual variations in global mean sea level during 1997-1998 and 2015-2016 El Nino Events

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kuo, Y.-N., Lo, M.-H., Liang, Y.-C., Tseng, Y.-H., & Hsu, C.-W. Terrestrial water storage anomalies emphasize interannual variations in global mean sea level during 1997-1998 and 2015-2016 El Nino Events. Geophysical Research Letters, 48(18), (2021): e2021GL094104, https://doi.org/10.1029/2021GL094104.Interannual variations in global mean sea level (GMSL) closely correlate with the evolution of El Niño-Southern Oscillation. However, GMSL differences occur in extreme El Niños; for example, in the 2015–2016 and 1997–1998 El Niños, the peak GMSL during the mature stage of the former (9.00 mm) is almost 2.5 times higher than the latter (3.72 mm). Analyses from satellite and reanalysis data sets show that the disparity in GMSL is primarily due to barystatic (ocean mass) changes. We find that the 2015–2016 event developed not purely as an Eastern Pacific El Niño event but with Central Pacific (CP) El Niño forcing. CP El Niños contribute to a stronger negative anomaly of global terrestrial water storage and subsequent higher barystatic heights. Our results suggest that the mechanism of hydrology-related interannual variations of GMSL should be further emphasized, as more CP El Niño events are projected to occur.This study was supported by a grant of MOST 106-2111-M-002-010-MY4 to National Taiwan University

    Future change in extreme precipitation in East Asian spring and Mei-yu seasons in two high-resolution AGCMs

    Get PDF
    Precipitation in the spring and Mei-yu seasons, the main planting and growing period in East Asia, is crucial to water resource management. Changes in spring and Mei-yu extreme precipitation under global warming are evaluated based on two sets of high-resolution simulations with various warming pattern of sea surface temperature (SST'spa). In the spring season, extreme precipitation exhibits larger enhancements over the northern flank of the present-day prevailing rainy region and a tendency of increased occurrence and enhanced intensity in the probability distribution. These changes imply a northward extension of future spring rainband. Although the mean precipitation shows minor change, enhanced precipitation intensity, less total rainfall occurrence, and prolonged consecutive dry days suggest a more challenging water resource management in the warmer climate. The projected enhancement in precipitation intensity is robust compared with the internal variability related to initial conditions (σˆint) and the uncertainty caused by SST'spa (σˆΔSST). In the Mei-yu season, extreme precipitation strengthens and becomes more frequent over the present-day prevailing rainband region. The thermodynamic component of moisture flux predominantly contributes to the changes in the spring season. In the Mei-yu season, both the thermodynamic and dynamic components of moisture flux enhance the moisture transport and intensify the extreme precipitation from southern China to northeast Asia. Compared with spring season, projecting future Mei-yu precipitation is more challenging because of its higher uncertainty associated with 1) the σˆint and σˆΔSST embedded in the projections and 2) the model characteristics of present-day climatology that determines the spatial distribution of precipitation enhancement.publishedVersio

    Bloch surface eigenstates within the radiation continuum

    Get PDF
    From detailed numerical calculations, we demonstrate that in simple photonic crystal structures, a discrete number of Bloch surface-localized eigenstates can exist inside the continuum of free-space modes. Coupling to the free space causes the surface modes to leak, but the forward and back-reflected leakage may interfere destructively to create a perfectly bound surface state with zero leakage. We perform analytical temporal coupled-mode theory analysis to show the generality of such phenomenon and its robustness from variations of system parameters. Periodicity, time-reversal invariance, two-fold rotational symmetry and a perfectly reflecting boundary are necessary for these unique states.United States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Grant DE-SC0001299)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-0819762)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-07-D0004

    Body-as-Subject in the Four-Hand Illusion

    Get PDF
    In a recent study (Chen et al., 2018), we conducted a series of experiments that induced the “four-hand illusion”: using a head-mounted display (HMD), the participant adopted the experimenter's first-person perspective (1PP) as if it was his/her own 1PP. The participant saw four hands via the HMD: the experimenter's two hands from the adopted 1PP and the subject's own two hands from the adopted third-person perspective (3PP). In the active four-hand condition, the participant tapped his/her index fingers, imitated by the experimenter. Once all four hands acted synchronously and received synchronous tactile stimulations at the same time, many participants felt as if they owned two more hands. In this paper, we argue that there is a philosophical implication of this novel illusion. According to Merleau-Ponty (1945/1962) and Legrand (2010), one can experience one's own body or body-part either as-object or as-subject but cannot experience it as both simultaneously, i.e., these two experiences are mutually exclusive. Call this view the Experiential Exclusion Thesis. We contend that a key component of the four-hand illusion—the subjective experience of the 1PP-hands that involved both “kinesthetic sense of movement” and “visual sense of movement” (the movement that the participant sees via the HMD)—provides an important counter-example against this thesis. We argue that it is possible for a healthy subject to experience the same body-part both as-subject and as-object simultaneously. Our goal is not to annihilate the distinction between body-as-object and body-as-subject, but to show that it is not as rigid as suggested by the phenomenologists

    The Relationship between Qi Deficiency, Cancer-related Fatigue and Quality of Life in Cancer Patients

    Get PDF
    AbstractBackgroundQi (氣 qì) refers to the vital energy of the body in Traditional Chinese medicines (TCM). Qi deficiency (氣虛 qì xū) is the most common symptom in cancer patients according to the concept of TCM. We hypothesized that cancer patients with Qi deficiency suffer from poor quality of life (QOL) and fatigue.MethodAmong the 256 registered cancer patients screened at our outpatient clinic, a total of 198 were enrolled. The inclusion criteria were (1) age between 18 and 70years, (2) cancer diagnosis confirmed by the professional physician, (3) being Chinese, and (4) Eastern Cooperative Oncology Group (ECOG) performance status rating (PSR)≤3. The major outcome is the difference in QOL score in cancer patients with and without Qi deficiency.ResultsThe initial results showed statistically significant differences in WHO-QOL scores in physical, psychological, and social domains between the groups with and without Qi deficiency as well as the groups with and without cancerrelated fatigue (CRF). All patients with CRF present were also diagnosed as Qi deficient. In addition, among the patients with no CRF, 39.9% (69/173) were diagnosed as suffering from Qi deficiency, which led to poor QOL.ConclusionsThe present study showed statistically significant difference in WHO-QOL scores in physical, psychological, and social domains between the groups with and without Qi deficiency as well as the groups with and without CRF. Cancer patients diagnosed with Qi deficiency or CRF have poor QOL. The concept of Qi deficiency in TCM might be applied to cancer health care

    Ecophysiology and plant size in a tropical epiphytic fern, Asplenium nidus, in Taiwan

    Get PDF
    Recent studies indicate that, especially in epiphytes, plant size has a strong influence on the ecophysiology of individual leaves of a plant. Extensive data sets that address this phenomenon, however, are limited to a few taxa of flowering plants. It was the purpose of this study to examine numerous physiological parameters in individuals of varying sizes of Asplenium nidus, a widespread epiphytic tropical fern, in a rain forest in northeastern Taiwan. Although stomatal dimensions and frond thickness did not vary with plant size, frond stomatal densities were higher in larger plants. Frond elemental concentration did not vary with plant size for nitrogen, magnesium, phosphorus, and sodium, while the concentrations of carbon, calcium, and potassium changed with plant size, though in different ways. The osmotic concentration of liquid expressed from the fronds did not change with plant size, nor did chlorophyll concentrations and chlorophyll a/b ratio. Fronds excised from smaller plants contained more water yet lost water at lower rates in laboratory drying experiments. Although rates of net CO2 exchange of the fronds measured in situ in the field appeared to increase with plant size, this increase and other size-related differences in gas exchange parameters were not significant. Although some aspects of the ecophysiology of this epiphytic fern varied with changes in plant size, most physiological parameters did not. Thus, the results of this study lend only little support to past findings that plant size is an important consideration in ecophysiological studies of plants
    corecore