880 research outputs found

    Thermal and electrical study on ac light-emitting diode with quantum wells under various cooling rate

    Get PDF
    Paper presented to the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Florida, 14-16 July 2014.The conventional Shockley equation is inappropriate to describe the relationship between the current density and the forward voltage drop across the p-n junction in LED (light-emitting diode) with multiple quantum wells. In the present study, a semi-empirical model based on the existing experimental measurements is proposed to evaluate the forwards voltage drop under given current density and temperature. The numerical model then is employed to investigate the electrical and temperature fields on ac LED with multiple quantum wells under various cooling rate. The numerical results reveal that the temperature of the LED oscillates under ac electrical potential. The temperature increases due to the heat generation arising from the electrical current across the p-n junction when the electrical potential exceeds the threshold voltage. Otherwise, there is no electrical current and thus the temperature decreases due to the effect of the cooling device. Both light-emitting power and maximum temperature increase as expected when the applied ac electrical potential increases. Fortunately, the temperature of the LED can be efficiently controlled by increasing the cooling rate. Although increasing the cooling rate would decrease the light-emitting power, the influence is not significant.cf201

    Protective effects of magnolol against oxidized LDL-induced apoptosis in endothelial cells

    Get PDF
    Magnolol, a compound extracted from the Chinese medicinal herb Magnolia officinalis, has several biological effects. However, its protective effects against endothelial injury remain unclear. In this study, we examined whether magnolol prevents oxidized low density lipoprotein (oxLDL)-induced vascular endothelial apoptosis. Incubation of oxLDL with magnolol (2.5-20 mu M) inhibited copper-induced oxidative modification via diene formation, thiobarbituric acid reactive substances (TBARS) assay and electrophoretic mobility assay. Apoptotic cell death as characterized by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) stain. We measured the production of reactive oxygen species (ROS) by using the fluorescent probe 2 ',7 '-dichlorofluorescein acetoxymethyl ester (DCF-AM), and observed the activity of antioxidant enzymes. Furthermore, several apoptotic signaling pathways which showed NF-kappa B activation, increased cytosolic calcium, alteration of mitochondrial membrane potential, cytochrome c release and activation of caspase 3 were also investigated. We demonstrated that magnolol prevented the copper-induced oxidative modification of LDL. Magnolol attenuated the oxLDL-induced ROS generation and subsequent NF-kappa B activation. Furthermore, intracellular calcium accumulation and subsequent mitochondrial membrane potential collapse, cytochome c release and activation of caspase 3 caused by oxLDL were also inhibited by magnolol. Our results suggest that magnolol may have clinical implications in the prevention of atherosclerotic vascular disease through decreasing the oxLDL-induced ROS production

    Leaf Extracts of Calocedrus formosana (Florin) Induce G2/M Cell Cycle Arrest and Apoptosis in Human Bladder Cancer Cells

    Get PDF
    Calocedrus formosana (Florin) bark acetone/ethylacetate extracts are known to exert an antitumor effect on some human cancer cell lines, but the mechanism is yet to be defined. The aim of this study was to determine the effects of Florin leaf methanol extracts on the growth and apoptosis of human bladder cancer cell lines. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that the growth of these bladder cancer cells was potently inhibited by the Florin leaf extracts. The cell cycle of these extract-treated cells (TCCSUP cells) was arrested at the G2/M phase as determined by flow cytometry. Western blot analysis revealed the increases of cyclin B1 and Cdc2 kinase levels, alone with the decrease of phosphorylated Cdc2 kinase, after treating these cells with the extracts. An immunofluorescence assessment of β-tubulin showed decreased levels of polymerized tubulin in treated cells. However, the proteolytic cleavage of poly ADP-ribose polymerase and the activation of caspase-3/-8/-9 were all increased upon treatments of extracts. The concurrent increase of Bax and decrease of Bcl-2 levels indicated that the extracts could induce apoptosis in these treated cells. Taken together, these results suggest that the Florin leaf extracts may be an effective antibladder cancer agent

    A Four-Gene Signature from NCI-60 Cell Line for Survival Prediction in Non-Small Cell Lung Cancer

    Get PDF
    Purpose: Metastasis is the main cause of mortality in non-small cell lung cancer (NSCLC) patients. Genes that can discriminate the invasion ability of cancer cells may become useful candidates for clinical outcome prediction. We identify invasion-associated genes through computational and laboratorial approach that supported this idea in NSCLC. Experimental Design: We first conducted invasion assay to characterize the invasion abilities of NCI-60 lung cancer cell lines. We then systematically exploited NCI-60 microarray databases to identify invasion-associated genes that showed differential expression between the high and the low invasion cell line groups. Furthermore, using the microarray data of Duke lung cancer cohort (GSE 3141), invasion-associated genes with good survival prediction potentials were obtained. Finally, we validated the findings by conducting quantitative PCR assay on an in-house collected patient group (n = 69) and by using microarray data from two public western cohorts (n = 257 and 186). Results: The invasion-associated four-gene signature (ANKRD49, LPHN1, RABAC1, and EGLN2) had significant prediction in three validation cohorts (P = 0.0184, 0.002, and 0.017, log-rank test). Moreover, we showed that four-gene signature was an independent prognostic factor (hazard ratio, 2.354, 1.480, and 1.670; P = 0.028, 0.014, and 0.033), independent of other clinical covariates, such as age, gender, and stage. Conclusion: The invasion-associated four-gene signature derived from NCI-60 lung cancer cell lines had good survival prediction power for NSCLC patients. (Clin Cancer Res 2009;15(23):7309-15

    Synthesis, structural and physical properties of δ\delta'-FeSe1x_{1-x}

    Full text link
    We report on synthesis, structural characterization, resistivity, magnetic and thermal expansion measurements on the as yet unexplored δ\delta'-phase of FeSe1x_{1-x}, here synthesized under ambient- (AP) and high-pressure (HP) conditions. We show that in contrast to β\beta-FeSe1x_{1-x}, monophasic superconducting δ\delta'-FeSe1x_{1-x} can be obtained in off-stoichiometric samples with excess Fe atoms preferentially residing in the van der Waals gap between the FeSe layers. The AP δ\delta'-FeSe1x_{1-x} sample studied here (TcT_c \simeq 8.5\,K) possesses an unprecedented residual resistivity ratio RRR \simeq 16. Thermal expansion data reveal a small feature around \sim90\,K, which resembles the anomaly observed at the structural and magnetic transitions for other Fe-based superconductors, suggesting that some kind of "magnetic state" is formed also in FeSe. %indicative of a fluctuating magnetic ordering. For HP samples (RRR \simeq 3), the disorder within the FeSe layers is enhanced through the introduction of vacancies, the saturated magnetic moment of Fe is reduced and only spurious superconductivity is observed.Comment: 7 pages, 8 figures, published versio

    A solution of the coincidence problem based on the recent galactic core black hole mass density increase

    Full text link
    A mechanism capable to provide a natural solution to two major cosmological problems, i.e. the cosmic acceleration and the coincidence problem, is proposed. A specific brane-bulk energy exchange mechanism produces a total dark pressure, arising when adding all normal to the brane negative pressures in the interior of galactic core black holes. This astrophysically produced negative dark pressure explains cosmic acceleration and why the dark energy today is of the same order to the matter density for a wide range of the involved parameters. An exciting result of the analysis is that the recent rise of the galactic core black hole mass density causes the recent passage from cosmic deceleration to acceleration. Finally, it is worth mentioning that this work corrects a wide spread fallacy among brane cosmologists, i.e. that escaping gravitons result to positive dark pressure.Comment: 14 pages, 3 figure

    The beam energy measurement system for the Beijing electron-positron collider

    Full text link
    The beam energy measurement system (BEMS) for the upgraded Beijing electron-positron collider BEPC-II is described. The system is based on measuring the energies of Compton back-scattered photons. The relative systematic uncertainty of the electron and positron beam energy determination is estimated as 2 \cdot 10^{-5}. The relative uncertainty of the beam's energy spread is about 6 %
    corecore