372 research outputs found

    KinasePhos: a Web Tool for Identifying Protein Kinase-Specific Phosphorylation Sites

    Get PDF
    [[abstract]]KinasePhos is a novel web server forcomputationally identifying catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the profile hidden Markov model, computational models are learned from the kinase-specific groups of the phosphorylation sites. After evaluating the learned models, the model with highest accuracy was selected from each kinase-specific group, for use in a web-based prediction tool for identifying protein phosphorylation sites. Therefore, this work developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity. The prediction tool is freely available at http://KinasePhos.mbc.nctu.edu.tw/

    ProKware: integrated software for presenting protein structural properties in protein tertiary structures

    Get PDF
    Protein tertiary structure plays an essential role in deciphering protein functions, especially protein structural properties, including domains, active sites and post-translational modifications. These properties typically yield useful clues for understanding protein functions. This work presents an integrated software, named ProKware, that presents protein structural properties in protein tertiary structures, such as domains, functional sites, families, active sites, binding sites, post-translational modifications and domain–domain interaction. Using this web-based and Windows-based interface, users can manipulate and visualize three-dimensional protein structures, as well as the supported structural properties that are curated in the protein knowledge database. ProKware is an effective and convenient solution for investigating protein functions and structural relationships. This software can be accessed on the internet at

    RegRNA: an integrated web server for identifying regulatory RNA motifs and elements

    Get PDF
    Numerous regulatory structural motifs have been identified as playing essential roles in transcriptional and post-transcriptional regulation of gene expression. RegRNA is an integrated web server for identifying the homologs of regulatory RNA motifs and elements against an input mRNA sequence. Both sequence homologs and structural homologs of regulatory RNA motifs can be recognized. The regulatory RNA motifs supported in RegRNA are categorized into several classes: (i) motifs in mRNA 5′-untranslated region (5′-UTR) and 3′-UTR; (ii) motifs involved in mRNA splicing; (iii) motifs involved in transcriptional regulation; (iv) riboswitches; (v) splicing donor/acceptor sites; (vi) inverted repeats; and (vii) miRNA target sites. The experimentally validated regulatory RNA motifs are extracted from literature survey and several regulatory RNA motif databases, such as UTRdb, TRANSFAC, alternative splicing database (ASD) and miRBase. A variety of computational programs are integrated for identifying the homologs of the regulatory RNA motifs. An intuitive user interface is designed to facilitate the comprehensive annotation of user-submitted mRNA sequences. The RegRNA web server is now available at

    SpliceInfo: an information repository for mRNA alternative splicing in human genome

    Get PDF
    We have developed an information repository named SpliceInfo to collect the occurrences of the four major alternative-splicing (AS) modes in human genome; these include exon skipping, 5′-alternative splicing, 3′-alternative splicing and intron retention. The dataset is derived by comparing the nucleotide and protein sequences available for a given gene for evidence of AS. Additional features such as the tissue specificity of the mRNA, the protein domain contained by exons, the GC-ratio of exons, the repeats contained within the exons, and the Gene Ontology are annotated computationally for each exonic region that is alternatively spliced. Motivated by a previous investigation of AS-related motifs such as exonic splicing enhancer and exonic splicing silencer, this resource also provides a means of identifying motifs candidates and this should help to identify potential regulatory mechanisms within a particular exonic sequence set and its two flanking intronic sequence sets. This is carried out using motif discovery tools to identify motif candidates related to alternative splicing regulation and together with a secondary structure prediction tool, will help in the identification of the structural properties of such regulatory motifs. The integrated resource is now available on http://SpliceInfo.mbc.NCTU.edu.tw/

    i-Genome: A database to summarize oligonucleotide data in genomes

    Get PDF
    BACKGROUND: Information on the occurrence of sequence features in genomes is crucial to comparative genomics, evolutionary analysis, the analyses of regulatory sequences and the quantitative evaluation of sequences. Computing the frequencies and the occurrences of a pattern in complete genomes is time-consuming. RESULTS: The proposed database provides information about sequence features generated by exhaustively computing the sequences of the complete genome. The repetitive elements in the eukaryotic genomes, such as LINEs, SINEs, Alu and LTR, are obtained from Repbase. The database supports various complete genomes including human, yeast, worm, and 128 microbial genomes. CONCLUSIONS: This investigation presents and implements an efficiently computational approach to accumulate the occurrences of the oligonucleotides or patterns in complete genomes. A database is established to maintain the information of the sequence features, including the distributions of oligonucleotide, the gene distribution, the distribution of repetitive elements in genomes and the occurrences of the oligonucleotides. The database can provide more effective and efficient way to access the repetitive features in genomes

    KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites

    Get PDF
    KinasePhos is a novel web server for computationally identifying catalytic kinase-specific phosphorylation sites. The known phosphorylation sites from public domain data sources are categorized by their annotated protein kinases. Based on the profile hidden Markov model, computational models are learned from the kinase-specific groups of the phosphorylation sites. After evaluating the learned models, the model with highest accuracy was selected from each kinase-specific group, for use in a web-based prediction tool for identifying protein phosphorylation sites. Therefore, this work developed a kinase-specific phosphorylation site prediction tool with both high sensitivity and specificity. The prediction tool is freely available at

    PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The elucidation of transcriptional regulation in plant genes is important area of research for plant scientists, following the mapping of various plant genomes, such as <it>A. thaliana</it>, <it>O. sativa </it>and <it>Z. mays</it>. A variety of bioinformatic servers or databases of plant promoters have been established, although most have been focused only on annotating transcription factor binding sites in a single gene and have neglected some important regulatory elements (tandem repeats and CpG/CpNpG islands) in promoter regions. Additionally, the combinatorial interaction of transcription factors (TFs) is important in regulating the gene group that is associated with the same expression pattern. Therefore, a tool for detecting the co-regulation of transcription factors in a group of gene promoters is required.</p> <p>Results</p> <p>This study develops a database-assisted system, PlantPAN (Plant Promoter Analysis Navigator), for recognizing combinatorial <it>cis</it>-regulatory elements with a distance constraint in sets of plant genes. The system collects the plant transcription factor binding profiles from PLACE, TRANSFAC (public release 7.0), AGRIS, and JASPER databases and allows users to input a group of gene IDs or promoter sequences, enabling the co-occurrence of combinatorial transcription factor binding sites (TFBSs) within a defined distance (20 bp to 200 bp) to be identified. Furthermore, the new resource enables other regulatory features in a plant promoter, such as CpG/CpNpG islands and tandem repeats, to be displayed. The regulatory elements in the conserved regions of the promoters across homologous genes are detected and presented.</p> <p>Conclusion</p> <p>In addition to providing a user-friendly input/output interface, PlantPAN has numerous advantages in the analysis of a plant promoter. Several case studies have established the effectiveness of PlantPAN. This novel analytical resource is now freely available at <url>http://PlantPAN.mbc.nctu.edu.tw</url>.</p

    ProSplicer: a database of putative alternative splicing information derived from protein, mRNA and expressed sequence tag sequence data

    Get PDF
    ProSplicer is a database of putative alternative splicing information derived from the alignment of proteins, mRNA sequences and expressed sequence tags (ESTs) against human genomic DNA sequences. Proteins, mRNA and ESTs provide valuable evidence that can reveal splice variants of genes. The alternative splicing information in the database can help users investigate the alternative splicing and tissue-specific expression of genes
    corecore