356 research outputs found

    Band-dependent quasiparticle dynamics in the hole-doped Ba-122 iron pnictides

    Get PDF
    We report on band-dependent quasiparticle dynamics in the hole-doped Ba-122 pnictides measured by ultrafast pump-probe spectroscopy. In the superconducting state of the optimal and over hole-doped samples, we observe two distinct relaxation processes: a fast component whose decay rate increases linearly with excitation density and a slow component whose relaxation is independent of excitation strength. We argue that these two components reflect the recombination of quasiparticles in the two hole bands through intraband and interband processes. We also find that the thermal recombination rate of quasiparticles increases quadratically with temperature in all samples. The temperature and excitation density dependence of the decays indicates fully gapped hole bands and nodal or very anisotropic electron bands.United States. Department of Energy (Grant No. DE-FG02-08ER46521)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (award number DMR - 0819762

    Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy

    Get PDF
    Introduction: The objective of this study was to investigate the effects of tumor necrosis factor (TNF)-alpha inhibitors on circulating T helper-type 17 (Th17) cells and Th17-related cytokines in patients with rheumatoid arthritis (RA). Methods: The frequencies of circulating Th17 cells and serum levels of Th17-related cytokines were determined using flow cytometry analysis and ELISA, respectively, in 48 RA patients both before (baseline) and six months after anti-TNF-alpha therapy. Therapeutic response was evaluated using European League Against Rheumatism (EULAR) response criteria. Results: Significantly higher baseline frequencies of circulating Th17 cells and serum levels of interleukin (IL)-6, IL17, IL-21, IL-23 and TNF-alpha were observed in active RA patients than in 12 healthy controls (all P < 0.001). After anti-TNF-alpha therapy, 36 patients (75%) were EULAR responders (20 good responders and 16 moderate responders) and 12 (25.0%) were non-responders. The mean levels of circulating Th17 cells and IL-17 significantly decreased (1.13% vs. 0.79%; 43.1 pg/ml vs. 27.8 pg/ml; respectively, both P < 0.001) in parallel with clinical remission in responders. Levels of IL-6, IL-21, IL-23 and TNF-alpha were significantly decreased after anti-TNF-alpha therapy in responders. In contrast, the mean levels of circulating Th17 cells and IL-17 significantly increased after anti-TNF-alpha therapy (2.94% vs. 4.23%; 92.1 pg/ml vs. 148.6 pg/ml; respectively, both P < 0.05) in non-responders. Logistic regression analysis identified a high baseline level of IL-17 as a significant predictor of poor therapeutic response. Conclusions: The beneficial effect of anti-TNF-alpha therapy might involve a decrease in Th17-related cytokines in responders, whereas rising levels of circulating Th17-cells and IL-17 were observed in patients with an inadequate response to anti-TNF-alpha therapy

    Combination of transverse myelitis and arachnoiditis in cauda equina syndrome of long-standing ankylosing spondylitis: MRI features and its role in clinical management

    Get PDF
    The cauda equina syndrome (CES) is a rare neurological complication of ankylosing spondylitis (AS). Imaging diagnosis of CES in long-standing AS patients (CES-AS) using myelography, computed tomography (CT), and magnetic resonance imaging (MRI) were reported in the literature. They, however, demonstrate only the chronic abnormalities of CES-AS, i.e., dural ectasia, dorsal dural diverticula, and selective bone erosion at the posterior elements of the vertebrae. To our knowledge, imaging features of acute intradural inflammation in CES-AS were not described. We report a patient of CES-AS in whom MRI disclosed acute transverse myelitis and arachnoiditis along the lower spinal cord, and discuss the pathogenesis of CES-AS and the role of MRI in clinical management

    Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp DT: an approach for mercury phytoremediation

    Get PDF
    A eukaryotic microalga, Chlorella sp. DT, was transformed with the Bacillus megaterium strain MB1 merA gene, encoding mercuric reductase (MerA), which mediates the reduction of Hg2+ to volatile elemental Hg-0. The transformed Chlorella cells were selected first by hygromycin B and then by HgCl2. The existence of merA gene in the genomic DNA of transgenic strains was shown by polymerase chain reaction amplification, while the stable integration of merA into genomic DNA of transgenic strains was confirmed by Southern blot analysis. The ability to remove Hg2+ in merA transgenic strains was higher than that in the wild type. The merA transgenic strains showed higher growth rate and photosynthetic activity than the wild type did in the presence of a toxic concentration of Hg2+. Cultured with Hg2+, the expression level of superoxide dismutase in transgenic strains was lower than that in the wild type, suggesting that the transgenic strains faced a lower level of oxidative stress. All the results indicated that merA gene was successfully integrated into the genome of transgenic strains and functionally expressed to promote the removal of Hg2+

    Sparticle masses in deflected mirage mediation

    Full text link
    We discuss the sparticle mass patterns that can be realized in deflected mirage mediation scenario of supersymmetry breaking, in which the moduli, anomaly, and gauge mediations all contribute to the MSSM soft parameters. Analytic expression of low energy soft parameters and also the sfermion mass sum rules are derived, which can be used to interpret the experimentally measured sparticle masses within the framework of the most general mixed moduli-gauge-anomaly mediation. Phenomenological aspects of some specific examples are also discussed.Comment: 43 pages, 17 figures, references adde

    A jump-growth model for predator-prey dynamics: derivation and application to marine ecosystems

    Full text link
    This paper investigates the dynamics of biomass in a marine ecosystem. A stochastic process is defined in which organisms undergo jumps in body size as they catch and eat smaller organisms. Using a systematic expansion of the master equation, we derive a deterministic equation for the macroscopic dynamics, which we call the deterministic jump-growth equation, and a linear Fokker-Planck equation for the stochastic fluctuations. The McKendrick--von Foerster equation, used in previous studies, is shown to be a first-order approximation, appropriate in equilibrium systems where predators are much larger than their prey. The model has a power-law steady state consistent with the approximate constancy of mass density in logarithmic intervals of body mass often observed in marine ecosystems. The behaviours of the stochastic process, the deterministic jump-growth equation and the McKendrick--von Foerster equation are compared using numerical methods. The numerical analysis shows two classes of attractors: steady states and travelling waves.Comment: 27 pages, 4 figures. Final version as published. Only minor change

    Mechanistic target of rapamycin (MTOR) protein expression in the tumor and its microenvironment correlates with more aggressive pathology at cystectomy

    Get PDF
    Background: The mechanistic target of rapamycin (mTOR) has been implicated in driving tumor biology in multiple malignancies, including urothelial carcinoma (UC). We investigate how mTOR and phosphorylated mTOR (pmTOR) protein expression correlate with chemoresponsiveness in the tumor and its microenvironment at final pathologic staging after neoadjuvant chemotherapy (NAC). Methods: A single-institution retrospective analysis was performed on 62 patients with cT2–4Nany UC undergoing NAC followed by radical cystectomy. Diagnostic (transurethral resection specimens, TURBT) and postchemotherapy radical cystectomy specimens were evaluated for mTOR and pmTOR protein expression using immunohistochemistry of the tumor, peritumoral stroma, and normal surrounding stroma. Protein expression levels were compared between clinical and pathologic stage. Whole transcriptome analysis was performed to evaluate mRNA expression relative to mTOR pathway activation. Results: Baseline levels of mTOR and pmTOR within TURBT specimens were not associated with clinical stage and response to chemotherapy overall. Nonresponders with advanced pathologic stage at cystectomy (ypT2–4/ypTanyN+) had significantly elevated mTOR tumor staining (P = 0.006) and a sustained mTOR and pmTOR staining in the peritumoral and surrounding normal stroma (NS). Several genes relevant to mTOR activity were found to be up-regulated in the tumors of nonresponders. Remarkably, complete responders at cystectomy (ypT0) had significant decreases in both mTOR and pmTOR protein expression in the peritumoral and normal stroma (P = 0.01–0.03). Conclusions: Our results suggest that mTOR pathway activity is increased in tumor and sustained in its microenvironment in patients with adverse pathologic findings at cystectomy. These findings suggest the relevance of targeting this pathway in bladder cancer
    • 

    corecore