1 research outputs found
Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting
Indoor
utilization of emerging photovoltaics is promising; however,
efficiency characterization under room lighting is challenging. We
report the first round-robin interlaboratory study of performance
measurement for dye-sensitized photovoltaics (cells and mini-modules)
and one silicon solar cell under a fluorescent dim light. Among 15
research groups, the relative deviation in power conversion efficiency
(PCE) of the samples reaches an unprecedented 152%. On the basis of
the comprehensive results, the gap between photometry and radiometry
measurements and the response of devices to the dim illumination are
identified as critical obstacles to the correct PCE. Therefore, we
use an illuminometer as a prime standard with a spectroradiometer
to quantify the intensity of indoor lighting and adopt the reverse-biased
current–voltage (<i>I</i>–<i>V</i>) characteristics as an indicator to qualify the <i>I</i>–<i>V</i> sampling time for dye-sensitized photovoltaics.
The recommendations can brighten the prospects of emerging photovoltaics
for indoor applications