657 research outputs found

    THE BALANCE EFFECT OF REARFOOT WEDGES WITH DIFFERENT HEIGHT FOR COLLEGIATE STUDENTS WITH CHRONIC ANKLE INSTABILITY: PILOT STUDY

    Get PDF
    Chronic ankle instability (CAI) is caused by recurrent lateral ankle sprain. Foot orthotic is one option of treatment. The purpose of this study was to determinate the balance effect of rearfoot wedges with different height in collegiate students with chronic ankle instability. Eight collegiate students with CAI subjects were voluntarily particapated in this study. The area of center of pressure was used as balance variable of outcome measurement. Seven height of rearfoot wedge was used to test, included 0°, 2°, 4°, 6° of medial wedge and 2°, 4°, 6° of lateral wedge. One-way ANOVA was used to analyze the difference among sevent height of wedge intervention in CAI group. The results were showed no significantly difference among seven height of wedge intervention. However, we found a trend of balance improvement with the wedge intervention, especially in 4 degrees of medial wedge intervention

    Quantified movement test of core muscles for Athletes

    Get PDF
    The purpose of this study was to compare the different of the core muscles ability between normal subjects and athletes of an assessment consisted of seven movement tests. Nineteen participants were voluntarily recruited in this study and divided into normal subjects (N=9, age=20.2+-0.7 y/o, weight:63.7+-11.7 kg, height:170.9+-6.7 cm) and collegiate athletes (N=10, age=19.9+-1.0 y/o, weight; 72.4+-7.8 kg, height; 172.5+-4.5 cm). The result shows that the path length of plank, bird dog with right-hand raise, bird dog with left-hand raise, right side plank, right bridge, left bridge and area of right bridge, left bridge has significant differences between two groups (Table 1). Athletes exhibit shorter path length and smaller path area in all of these data

    An overview of the Phalaenopsis orchid genome through BAC end sequence analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phalaenopsis </it>orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC) end sequences (BESs) can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding.</p> <p>Results</p> <p>We used two BAC libraries (constructed using the <it>Bam</it>HI and <it>Hin</it>dIII restriction enzymes) of <it>Phalaenopsis equestris </it>to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the <it>Bam</it>HI and <it>Hin</it>dIII libraries, respectively), at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the <it>Phalaenopsis </it>genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp) in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6%) were predicted to represent protein-encoding regions, whereas 1,272 (23.0%) contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively), whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs) were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6%) of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or <it>Arabidopsis</it>, and even fewer mapped to the rice genome. This work will facilitate analysis of the <it>Phalaenopsis </it>genome, and will help clarify similarities and differences in genome composition between orchids and other plant species.</p> <p>Conclusion</p> <p>Using BES analysis, we obtained an overview of the <it>Phalaenopsis </it>genome in terms of gene abundance, the presence of repetitive DNA and SSR markers, and the extent of microsynteny with other plant species. This work provides a basis for future physical mapping of the <it>Phalaenopsis </it>genome and advances our knowledge thereof.</p

    Rapid and sensitive insulated isothermal PCR for point-of-need feline leukaemia virus detection

    Get PDF
    Objectives: Feline leukaemia virus (FeLV), a gamma retrovirus, causes diseases of the feline haematopoietic system that are invariably fatal. Rapid and accurate testing at the point-of-need (PON) supports prevention of virus spread and management of clinical disease. This study evaluated the performance of an insulated isothermal PCR (iiPCR) that detects proviral DNA, and a reverse transcription (RT)-iiPCR that detects both viral RNA and proviral DNA, for FeLV detection at the PON. Methods: Mycoplasma haemofelis, feline coronavirus, feline herpesvirus, feline calicivirus and feline immunodeficiency virus were used to test analytical specificity. In vitro transcribed RNA, artificial plasmid, FeLV strain American Type Culture Collection VR-719 and a clinical FeLV isolate were used in the analytical sensitivity assays. A retrospective study including 116 clinical plasma and serum samples that had been tested with virus isolation, real-time PCR and ELISA, and a prospective study including 150 clinical plasma and serum samples were implemented to evaluate the clinical performances of the iiPCR-based methods for FeLV detection. Results: Ninety-five percent assay limit of detection was calculated to be 16 RNA and five DNA copies for the RT-iiPCR, and six DNA copies for the iiPCR. Both reactions had analytical sensitivity comparable to a reference real-time PCR (qPCR) and did not detect five non-target feline pathogens. The clinical performance of the RT-iiPCR and iiPCR had 98.82% agreement (kappa[κ] = 0.97) and 100% agreement (κ = 1.0), respectively, with the qPCR (n = 85). The agreement between an automatic nucleic extraction/RT-iiPCR system and virus isolation to detect FeLV in plasma or serum was 95.69% (κ = 0.95) and 98.67% (κ = 0.85) in a retrospective (n = 116) and a prospective (n = 150) study, respectively. Conclusions and relevance: These results suggested that both RT-iiPCR and iiPCR assays can serve as reliable tools for PON FeLV detection

    The Involvement of Neuron-Specific Factors in Dendritic Spinogenesis: Molecular Regulation and Association with Neurological Disorders

    Get PDF
    Dendritic spines are the location of excitatory synapses in the mammalian nervous system and are neuron-specific subcellular structures essential for neural circuitry and function. Dendritic spine morphology is determined by the F-actin cytoskeleton. Factin remodeling must coordinate with different stages of dendritic spinogenesis, starting from dendritic filopodia formation to the filopodia-spines transition and dendritic spine maturation and maintenance. Hundreds of genes, including F-actin cytoskeleton regulators, membrane proteins, adaptor proteins, and signaling molecules, are known to be involved in regulating synapse formation. Many of these genes are not neuron-specific, but how they specifically control dendritic spine formation in neurons is an intriguing question. Here, we summarize how ubiquitously expressed genes, including syndecan-2, NF1 (encoding neurofibromin protein), VCP, and CASK, and the neuron-specific gene CTTNBP2 coordinate with neurotransmission, transsynaptic signaling, and cytoskeleton rearrangement to control dendritic filopodia formation, filopodia-spines transition, and dendritic spine maturation and maintenance. The aforementioned genes have been associated with neurological disorders, such as autism spectrum disorders (ASDs), mental retardation, learning difficulty, and frontotemporal dementia. We also summarize the corresponding disorders in this report

    A Pan-Dengue Virus Reverse Transcription-Insulated Isothermal PCR Assay Intended for Point-of-Need Diagnosis of Dengue Virus Infection by Use of the POCKIT Nucleic Acid Analyzer

    Get PDF
    Dengue virus (DENV) infection is considered a major public health problem in developing tropical countries where the virus is endemic and continues to cause major disease outbreaks every year. Here, we describe the development of a novel, inexpensive, and user-friendly diagnostic assay based on a reverse transcription-insulated isothermal PCR (RT-iiPCR) method for the detection of all four serotypes of DENV in clinical samples. The diagnostic performance of the newly established pan-DENV RT-iiPCR assay targeting a conserved 3′ untranslated region of the viral genome was evaluated. The limit of detection with a 95% confidence was estimated to be 10 copies of in vitro-transcribed (IVT) RNA. Sensitivity analysis using RNA prepared from 10-fold serial dilutions of tissue culture fluid containing DENVs suggested that the RT-iiPCR assay was comparable to the multiplex real-time quantitative RT-PCR (qRT-PCR) assay for DENV-1, -3, and -4 detection but 10-fold less sensitive for DENV-2 detection. Subsequently, plasma collected from patients suspected of dengue virus infection (n = 220) and individuals not suspected of dengue virus infection (n = 45) were tested by the RT-iiPCR and compared to original test results using a DENV NS1 antigen rapid test and the qRT-PCR. The diagnostic agreement of the pan-DENV RT-iiPCR, NS1 antigen rapid test, and qRT-PCR tests was 93.9%, 84.5%, and 97.4%, respectively, compared to the composite reference results. This new RT-iiPCR assay along with the portable POCKIT nucleic acid analyzer could provide a highly reliable, sensitive, and specific point-of-need diagnostic assay for the diagnosis of DENV in clinics and hospitals in developing countries

    Comparison of Aspergillus-specific antibody cut-offs for the diagnosis of aspergillosis

    Get PDF
    BackgroundAspergillus diseases are frequently encountered in patients who are immunocompromised. Without a prompt diagnosis, the clinical consequences may be lethal. Aspergillus-specific antibodies have been widely used to facilitate the diagnosis of Aspergillus diseases. To date, universally standardized cut-off values have not been established. This study aimed to investigate the cut-off values of Aspergillus-specific antibodies and perform a narrative review to depict the geographic differences in the Taiwanese population.MethodsWe analyzed enrolled 118 healthy controls, 29 patients with invasive aspergillosis (IA), chronic pulmonary aspergillosis (CPA), and allergic bronchopulmonary aspergillosis (ABPA) and 99 with disease control, who were tested for Aspergillus fumigatus and Aspergillus niger-specific IgG and IgE using ImmunoCAP. 99 participants not fulfilling the diagnosis of IA, CPA, and ABPA were enrolled in the disease control group. The duration of retrieval of medical records from June 2018 to September 2021. Optimal cut-offs and association were determined using receiver operating characteristic curve (ROC) analysis.ResultsWe found that patients with CPA had the highest A. fumigatus-specific IgG levels while patients with ABPA had the highest A. fumigatus-specific IgE, and A. niger-specific IgG and IgE levels. In patients with CPA and ABPA, the optimal cut-offs of A. fumigatus-specific IgG and A. niger-specific IgG levels were 41.6, 40.8, 38.1, and 69.9 mgA/l, respectively. Geographic differences in the cut-off values of A. fumigatus-specific IgG were also noted. Specifically, the levels were different in eco-climatic zones.ConclusionWe identified the optimal cut-offs of Aspergillus-specific antibodies to facilitate a precise diagnosis of aspergillosis. The observed geographic differences of the antibody levels suggest that an eco-climatic-specific reference is needed to facilitate a prompt and accurate diagnosis of aspergillosis
    corecore