7,036 research outputs found
A Model-Based Reconstruction Method for Incomplete Projection Industrial Computed Tomography Imaging
In computerized tomography, the cross-sectioned image of an object can be reconstructed from a set of projection data. It provides the ability to image internal structure which can not be inspected effectively with alternate techniques. Based on the Fourier slice theorem[l], projections in a full angular range and with sufficiently fine angular spacing are required to reconstruct a unique image. In some situations, however, complete projections are not available due to physical limitations in the data acquisition process. Image quality is degraded by the absence of complete data. Because most manufactured parts were built from a designerâs blueprint or solid modeling electronic database, a great deal is known about the physical structure of the part. Incorporating a priori information extracted from the CAD model has the potential to enhance incomplete projection CT image quality. In this paper, a model-based CT reconstruction method is presented. The a priori information used to enhance incomplete projection CT image quality is extracted from a 3-D solid modeling electronic database. Engineering database matching is conducted to extract the proper 2D cross-sectioned model image corresponding to the CT projection plane. A moment-based registration method is applied to ensure proper use of a priori information for model-based CT reconstruction. Furthermore, a projection substitution scheme, including projection alignment and automatic scaling method, is developed so that the projection data in the missing angular range calculated from a model image can be automatically rescaled to match the projection data in the available angular range. Experimental results of applying the model-based CT reconstruction method to an industrial part in both the limited-angle and the penetration-limited incomplete projection situations are presented and described. It is shown that the use of a priori information from solid models is a powerful technique for enhancing the quality of incomplete data CT images
The Origin of \lya Absorption Systems at ---Implications from the Hubble Deep Field
The Hubble Deep Field images have provided us with a unique chance to relate
statistical properties of high-redshift galaxies to statistical properties of
\lya absorption systems. Combining an {\em empirical} measure of the galaxy
surface density versus redshift with an {\em empirical} measure of the gaseous
extent of galaxies, we predict the number density of \lya absorption systems
that originate in extended gaseous envelopes of galaxies versus redshift. We
show that at least 50% and as much as 100% of observed \lya absorption systems
of W\apg0.32 \AA can be explained by extended gaseous envelops of galaxies.
Therefore, we conclude that known galaxies of known gaseous extent must produce
a significant fraction and perhaps all of \lya absorption systems over a large
redshift range.Comment: 12 pages, 3 figures, accepted for publication in the Astrophysical
Journal, April 10, 2000 issu
Efficient orthogonal control of tunnel couplings in a quantum dot array
Electrostatically-defined semiconductor quantum dot arrays offer a promising
platform for quantum computation and quantum simulation. However, crosstalk of
gate voltages to dot potentials and inter-dot tunnel couplings complicates the
tuning of the device parameters. To date, crosstalk to the dot potentials is
routinely and efficiently compensated using so-called virtual gates, which are
specific linear combinations of physical gate voltages. However, due to
exponential dependence of tunnel couplings on gate voltages, crosstalk to the
tunnel barriers is currently compensated through a slow iterative process. In
this work, we show that the crosstalk on tunnel barriers can be efficiently
characterized and compensated for, using the fact that the same exponential
dependence applies to all gates. We demonstrate efficient calibration of
crosstalk in a quadruple quantum dot array and define a set of virtual barrier
gates, with which we show orthogonal control of all inter-dot tunnel couplings.
Our method marks a key step forward in the scalability of the tuning process of
large-scale quantum dot arrays.Comment: 8 pages, 7 figure
The Star Formation Rate Intensity Distribution Function--Implications for the Cosmic Star Formation Rate History of the Universe
We address the effects of cosmological surface brightness dimming on
observations of faint galaxies by examining the distribution of "unobscured"
star formation rate intensities versus redshift. We use the star formation rate
intensity distribution function to assess the ultraviolet luminosity density
versus redshift, based on our photometry and photometric redshift measurements
of faint galaxies in the HDF and the HDF--S WFPC2 and NICMOS fields. We find
that (1) previous measurements have missed a dominant fraction of the
ultraviolet luminosity density of the universe at high redshifts by neglecting
cosmological surface brightness dimming effects, which are important at
redshifts larger than z = 2, (2) the incidence of the highest intensity star
forming regions increases monotonically with redshift, and (3) the ultraviolet
luminosity density plausibly increases monotonically with redshift through the
highest redshifts observed. By measuring the spectrum of the luminosity density
versus redshift, we also find that (4) previous measurements of the ultraviolet
luminosity density at redshifts z < 2 must be reduced by a factor 2 to allow
for the spectrum of the luminosity density between rest-frame wavelengths 1500
and 2800 A. And by comparing with observations of high-redshift damped
Lyman-alpha absorption systems detected toward background QSOs, we further find
that (5) the distribution of star formation rate intensities matches the
distribution of neutral hydrogen column densities at redshifts z = 2 through 5,
which establishes a quantitative connection between high-redshift galaxies and
high column density gas and suggests that high-redshift damped Lyman-alpha
absorption systems trace lower star formation rate intensity regions of the
same galaxies detected in star light in the HDF and HDF--S.Comment: 28 pages, 9 figures; accepted for publication in the Astrophysical
Journa
- âŠ