300 research outputs found

    The Severity of Fatty Liver Disease Relating to Metabolic Abnormalities Independently Predicts Coronary Calcification

    Get PDF
    Background. Nonalcoholic fatty liver disease (NAFLD) is one of the metabolic disorders presented in liver. The relationship between severity of NAFLD and coronary atherosclerotic burden remains largely unknown. Methods and Materials. We analyzed subjects undergoing coronary calcium score evaluation by computed tomography (MDCT) and fatty liver assessment using abdominal ultrasonography. Framingham risk score (FRS) and metabolic risk score (MRS) were obtained in all subjects. A graded, semiquantitative score was established to quantify the severity of NAFLD. Multivariate logistic regression analysis was used to depict the association between NAFLD and calcium score. Results. Of all, 342 participants (female: 22.5%, mean age: 48.7 ± 7.0 years) met the sufficient information rendering detailed analysis. The severity of NAFLD was positively associated with MRS (X2 = 6.12, trend P < 0.001) and FRS (X2 = 5.88, trend P < 0.001). After multivariable adjustment for clinical variables and life styles, the existence of moderate to severe NAFLD was independently associated with abnormal calcium score (P < 0.05). Conclusion. The severity of NAFLD correlated well with metabolic abnormality and was independently predict coronary calcification beyond clinical factors. Our data suggests that NAFLD based on ultrasonogram could positively reflect the burden of coronary calcification

    Extending the Pre-Training of BLOOM for Improved Support of Traditional Chinese: Models, Methods and Results

    Full text link
    In this paper we present the multilingual language model BLOOM-zh that features enhanced support for Traditional Chinese. BLOOM-zh has its origins in the open-source BLOOM models presented by BigScience in 2022. Starting from released models, we extended the pre-training of BLOOM by additional 7.4 billion tokens in Traditional Chinese and English covering a variety of domains such as news articles, books, encyclopedias, educational materials as well as spoken language. In order to show the properties of BLOOM-zh, both existing and newly created benchmark scenarios are used for evaluating the performance. BLOOM-zh outperforms its predecessor on most Traditional Chinese benchmarks while maintaining its English capability. We release all our models to the research community

    Role of Pigment Epithelium-Derived Factor in Stem/Progenitor Cell-Associated Neovascularization

    Get PDF
    Pigment epithelium-derived factor (PEDF) was first identified in retinal pigment epithelium cells. It is an endogenously produced protein that is widely expressed throughout the human body such as in the eyes, liver, heart, and adipose tissue; it exhibits multiple and varied biological activities. PEDF is a multifunctional protein with antiangiogenic, antitumorigenic, antioxidant, anti-inflammatory, antithrombotic, neurotrophic, and neuroprotective properties. More recently, PEDF has been shown to be the most potent inhibitor of stem/progenitor cell-associated neovascularization. Neovascularization is a complex process regulated by a large, interacting network of molecules from stem/progenitor cells. PEDF is also involved in the pathogenesis of angiogenic eye disease, tumor growth, and cardiovascular disease. Novel antiangiogenic agents with tolerable side effects are desired for the treatment of patients with various diseases. Here, we review the value of PEDF as an important endogenous antiangiogenic molecule; we focus on the recently identified role of PEDF as a possible new target molecule to influence stem/progenitor cell-related neovascularization

    Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Berberine (BER), the major alkaloidal component of <it>Rhizoma coptidis</it>, has multiple pharmacological effects including inhibition of acetylcholinesterase, reduction of cholesterol and glucose levels, anti-inflammatory, neuroprotective and neurotrophic effects. It has also been demonstrated that BER can reduce the production of beta-amyloid<sub>40/42</sub>, which plays a critical and primary role in the pathogenesis of Alzheimer's disease. However, the mechanism by which it accomplishes this remains unclear.</p> <p>Results</p> <p>Here, we report that BER could not only significantly decrease the production of beta-amyloid<sub>40/42 </sub>and the expression of beta-secretase (BACE), but was also able to activate the extracellular signal-regulated kinase1/2 (ERK1/2) pathway in a dose- and time-dependent manner in HEK293 cells stably transfected with APP695 containing the Swedish mutation. We also find that U0126, an antagonist of the ERK1/2 pathway, could abolish (1) the activation activity of BER on the ERK1/2 pathway and (2) the inhibition activity of BER on the production of beta-amyloid<sub>40/42 </sub>and the expression of BACE.</p> <p>Conclusion</p> <p>Our data indicate that BER decreases the production of beta-amyloid<sub>40/42 </sub>by inhibiting the expression of BACE via activation of the ERK1/2 pathway.</p

    Microcrystalline-Silicon-Oxide-Based N-Type Reflector Structure in Micromorph Tandem Solar Cells

    Get PDF
    N-type microcrystalline silicon oxide thin films (n-c-SiO:H) have been deposited by VHF-PECVD (40 MHz) with reactant gas mixtures of CO2/SiH4 and H2. N-c-SiO thin films exhibiting low refractive index value (n600nm∼2), and medium/high conductivity (≧10−9 S/cm) are suitable to be used as an “n-type reflector” in micromorph tandem solar cells. Transmission electron microscopy (TEM) results show that microstructures of n-c-SiO:H thin films contain nanocrystalline Si particles, which are randomly embedded in the a-SiO matrix. This specific microstructure provides n-c-SiO:H thin films excellent optoelectronic properties; therefore, n-c-SiO:H thin films are appropriate candidates for “n-type reflector” structures in Si tandem solar cells

    Wolfberry genomes and the evolution of Lycium (Solanaceae)

    Get PDF
    AbstractWolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.</jats:p
    corecore