774 research outputs found

    Dynamic Finite Element Analysis on Underlay Microstructure of Cu/low-k Wafer during Wirebonding

    Get PDF
    The aim of present research is to investigate dynamic stress analysis for microstructure of Cu/Low-K wafer subjected to wirebonding predicted by finite element software ANSYS/LS-DYNA. Two major analyses are conducted in the present research. In the first, the characteristic of heat affected zone (HAZ) and free air ball (FAB) on ultra thin Au wire have been carefully experimental measured. Secondary, the dynamic response on Al pad/beneath the pad of Cu/low-K wafer during wirebonding process has been successfully predicted by finite element analysis (FEA). Tensile mechanical properties of ultra thin wire before/after electric flame-off (EFO) process have been investigated by self-design pull test fixture. The experimental obtained hardening value has significantly influence on localize stressed area on Al pad. This would result in Al pad squeezing around the smashed FAB during impact stage and the consequent thermosonic vibration stage. Microstructure of FAB and HAZ are also carefully measured by micro/nano indentation instruments. All the measured data serves as material inputs for the FEA explicit software ANSYS/LS-DYNA. Because the crack of low-k layer and delamination of copper via are observed, dynamic transient analysis is performed to inspect the overall stress/strain distributions on the microstructure of Cu/low-k wafer. Special emphasizes are focused on the copper via layout and optimal design of Cu/low-k microstructure. It is also shown that the Al pad can be replaced by Al-Cu alloy pad or Cu pad to avoid large deformation on pad and cracking beneath the surface. A series of comprehensive experimental works and FEA predictions have been performed to increase bondability and reliability in this study

    Supporting Acute Appendicitis Diagnosis: A Pre-Clustering-Based Classification Technique

    Get PDF
    Service quality and cost containment represent two critical challenges in healthcare management. Toward that end, acute appendicitis, a common surgical condition, is important and requires timely, accurate diagnosis. The diverse and atypical symptoms make such diagnoses difficult, thus resulting in increased morbidity and negative appendectomy. While prior research has recognized the use of classification analysis to support acute appendicitis diagnosis, the skewed distribution of the cases pertaining to positive or negative acute appendicitis has significantly constrained the effectiveness of the existing classification techniques. In this study, we develop a pre-clustering-based classification (PCC) technique to address the skewed distribution problem common to acute appendicitis diagnosis. We empirically evaluate the proposed PCC technique with 574 clinical cases of positive and negative acute appendicitis obtained from a tertiary medical center in Taiwan. Our evaluation includes tradition support vector machine, a prevalent resampling classification technique, Alvarado scoring system, and a multi-classifier committee for performance benchmark purposes. Our results show the PCC technique more effective and less biased than the benchmark techniques, without favoring the positive or negative class

    Superior Mesenteric Artery Syndrome: A Single-institution Experience

    Get PDF
    Background:Superior mesenteric artery syndrome (SMAS) is a rare disease in adult. SMAS is characterized by acute, or, more commonly, chronic nonspecific symptoms due to duodenal obstruction and severe malnutrition with reduced arterio-mesenteric angle and distance. Surgical treatment may be necessary in most cases with chronic symptoms or when conservative treatment fails in SMAS.Methods:A retrospective chart review was performed on patients who underwent operation for SMAS from January 2008 to August 2020 in Cardinal Tien Hospital. Patients’ clinical presentations, surgical intervention, and outcomes.Results:Data from a total of 14 patients diagnosed with SMAS were analyzed, of which seven were diagnosed with SMAS by abdominal computed tomography and upper gastrointestinal series with water-soluble barium contrast. Six of the confirmed cases underwent surgery, namely, gastric decompression using a nasogastric tube, andcorrection of electrolyte imbalance. The nasoduodenal tube was placed through the obstructed duodenum to provide a high-nutrient fluid supplement. After conservative treatment failure, the patients underwent surgery. Of the six patients, four underwent duodenojejunostomy, one underwent a mini-laparotomy duodenojejunostomy bypass, and the last one underwent Roux-en-Y duodenojejunal bypass with duodenal feeding tube insertion.Conclusion:Patients with SMAS should initially be treated conservative. Surgical intervention should be considered in patients in whom conservative treatments were not effective.Complete resolution of all symptoms may not always be guaranteed after surgical intervention. Laparoscopy is currently widely used. In well-selected patients, minimally invasive or mini-laparotomy duodenojejunostomy is a safe and effective treatment for SMAS. The main advantages of mini-laparotomy duodenojejunostomy over other surgical approaches include half-length surgical incision and a shorter operative time. Duodenojejunostomy is rapidly becoming the standard procedure of this condition, and it has excellent outcomes comparable with those of open surgery

    Association between genetic variant on chromosome 12p13 and stroke survival and recurrence: a one year prospective study in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between ischemic stroke and 2 single nucleotide polymorphisms (SNPs) on chromosome 12p13, rs12425791 and rs11833579 appears inconsistent across different samples. These SNPs are close to the ninjurin2 gene which may alter the risk of stroke by affecting brain response to ischemic injury. The purpose of this study was to investigate the association between these two SNPs and ischemic stroke risk, as well as prognostic outcomes in a Taiwanese sample.</p> <p>Methods</p> <p>We examined the relations of these two SNPs to the odds of new-onset ischemic stroke, ischemic stroke subtypes, and to the one year risk of stroke-related death or recurrent stroke following initial stroke in a case-control study. A total of 765 consecutive patients who had first-ever ischemic stroke were compared to 977 stroke-free, age-matched controls. SNPs were genotyped by Taqman fluorescent allelic discrimination assay. The association between ischemic stroke and SNPs were analyzed by multivariate logistic regression. Cox proportional hazard model was used to assess the effect of individual SNPs on stroke-related mortality or recurrent stroke.</p> <p>Results</p> <p>There was no significant association between SNP rs12425791 and rs11833579 and ischemic stroke after multiple testing corrections. However, the marginal significant association was observed between SNP rs12425791 and large artery atherosclerosis under recessive model (OR, 2.30; 95%CI, 1.22-4.34; q-value = 0.062). Among the 765 ischemic stroke patients, 59 died or developed a recurrent stroke. After adjustment for age, sex, vascular risk factors and baseline stroke severity, Cox proportional hazard analysis indicated that the hazard ratios were 2.76 (95%CI, 1.34-5.68; q-value, 0.02) and 2.15 (95%CI, 1.15-4.02; q-value, 0.03) for individuals with homozygous variant allele of rs12425791 and rs11833579, respectively.</p> <p>Conclusions</p> <p>This is a precedent study that found genetic variants of rs12425791 and rs11833579 on chromosome 12p13 are independent predictors of stroke-related mortality or stroke recurrence in patients with incident ischemic stroke in Taiwan. Further study is needed to explore the details of the physiological function and the molecular mechanisms underlying the association of this genetic locus with ischemic stroke.</p

    Asymmetric 3D Elasticâ Plastic Strainâ Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking

    Full text link
    Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or inâ plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elasticâ plastic straining is reported that utilizes GPaâ level laser shocking at a high strain rate (dε/dt) â 106â 107 sâ 1, with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. Highâ resolution imaging and Raman spectroscopy reveal strainâ induced modifications to the atomic and electronic structure in graphene and firstâ principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries.Both the bandgap structure and the Fermi level of monolayer graphene are modulated using an easy and effective optomechanical method. Laserâ shockâ induced 3D nanoshaping enables an asymmetric elasticâ plastic straining of graphene, resulting in a wide graphene bandgap of over 2.1 eV and a wide Fermi level adjustment range of 0.6 eV.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149335/1/adma201900597.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149335/2/adma201900597-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149335/3/adma201900597_am.pd

    Response of microbial communities in the tobacco phyllosphere under the stress of validamycin

    Get PDF
    Validamycin, is classified as an environmentally friendly fungicide. It has high efficacy with little associated pollution risk, and it has been used in China on tobacco for many years especially during leaf spot season. To understand changes in microbial communities and functional aspects of the tobacco phyllosphere after exposure to validamycin, the chemical was sprayed on tobacco leaves during brown spot epidemic periods caused by Alternaria alternata, and asymptomatic and symptomatic leaves of tobacco were sampled at different times (0 day before, 5, 10, and 15 days after application). The fungal and bacterial population diversity and structure were revealed using Illumina NovaSeq PE250 high-throughput sequencing technology, and Biolog-ECO technology which analyzes the metabolic differences between samples by using different carbon sources as the sole energy source. The results showed that the microbial community structure of both asymptomatic and symptomatic tobacco leaves changed after the application of valproate, with the microbial community structure of the asymptomatic tobacco leaves being more strongly affected than that of the symptomatic leaves, and the diversity of bacteria being greater than that of fungi. Phyllosphere fungal diversity in asymptomatic leaves increased significantly after application, and bacterial abundance and diversity in both asymptomatic and symptomatic leaves first increased and then decreased. Validamycin treatment effectively reduced the relative abundance of Alternaria, Cladosporium, Kosakonia, and Sphingomonas in leaves showing symptoms of tobacco brown spot, while the relative abundance of Thanatephorus, Pseudomonas, and Massilia increased significantly after application. Furthermore, the ability to metabolize a variety of carbon sources was significantly reduced in both types of leaves after validamycin application, and both types had a weaker ability to metabolize α-Ketobutyric Acid after application. This study reveals phyllosphere micro-ecological changes in symptomatic and asymptomatic tobacco leaves during different periods after validamycin application and the effects on the metabolic capacity of phyllosphere microorganisms. It can provide some basis for exploring the effect of validamycin on the control of tobacco brown spot

    Role of pirenoxine in the effects of catalin on in vitro ultraviolet-induced lens protein turbidity and selenite-induced cataractogenesis in vivo

    Get PDF
    Purpose: In this study, we investigated the biochemical pharmacology of pirenoxine (PRX) and catalin under in vitro selenite/calcium- and ultraviolet (UV)-induced lens protein turbidity challenges. The systemic effects of catalin were determined using a selenite-induced cataractogenesis rat model. Methods: In vitro cataractogenesis assay systems (including UVB/C photo-oxidation of lens crystallins, calpain-induced proteolysis, and selenite/calcium-induced turbidity of lens crystallin solutions) were used to screen the activity of PRX and catalin eye drop solutions. Turbidity was identified as the optical density measured using spectroscopy at 405 nm. We also determined the in vivo effects of catalin on cataract severity in a selenite-induced cataract rat model. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) was applied to analyze the integrity of crystallin samples. Results: PRX at 1,000 μM significantly delayed UVC-induced turbidity formation compared to controls after 4 h of UVC exposure (p<0.05), but not in groups incubated with PRX concentrations of <1,000 μM. Results were further confirmed by SDS–PAGE. The absolute γ-crystallin turbidity induced by 4 h of UVC exposure was ameliorated in the presence of catalin equivalent to 1~100 μM PRX in a concentration-dependent manner. Samples with catalin-formulated vehicle only (CataV) and those containing PRX equivalent to 100 μM had a similar protective effect after 4 h of UVC exposure compared to the controls (p<0.05). PRX at 0.03, 0.1, and 0.3 μM significantly delayed 10 mM selenite- and calcium-induced turbidity formation compared to controls on days 0~4 (p<0.05). Catalin (equivalent to 32, 80, and 100 μM PRX) had an initial protective effect against selenite-induced lens protein turbidity on day 1 (p<0.05). Subcutaneous pretreatment with catalin (5 mg/kg) also statistically decreased the mean cataract scores in selenite-induced cataract rats on post-induction day 3 compared to the controls (1.3±0.2 versus 2.4±0.4; p<0.05). However, catalin (equivalent to up to 100 μM PRX) did not inhibit calpain-induced proteolysis activated by calcium, and neither did 100 μM PRX. Conclusions: PRX at micromolar levels ameliorated selenite- and calcium-induced lens protein turbidity but required millimolar levels to protect against UVC irradiation. The observed inhibition of UVC-induced turbidity of lens crystallins by catalin at micromolar concentrations may have been a result of the catalin-formulated vehicle. Transient protection by catalin against selenite-induced turbidity of crystallin solutions in vitro was supported by the ameliorated cataract scores in the early stage of cataractogenesis in vivo by subcutaneously administered catalin. PRX could not inhibit calpain-induced proteolysis activated by calcium or catalin itself, and may be detrimental to crystallins under UVB exposure. Further studies on formulation modifications of catalin and recommended doses of PRX to optimize clinical efficacy by cataract type are warranted
    corecore