655 research outputs found

    Flexible Acculturation

    Get PDF
    “Flexibility” has become an important concept in studies of globalization and transnationalism. Most academic discussions fall into the literature of global capitalist restructuring: e.g., Piore and Sabel’s (1984) notion of flexible specialization and David Harvey’s concept (1991) of flexible accumulation. These discussions are centered on economic production and market logics. Theoretical discussions of flexibility about other regimes of power — such as cultural reproduction, the nation-state and family — are relatively insufficient. In this paper, I explore the concept of “flexible acculturation,” first proposed by Jan Nederveen-Pieterse (2007), to show a cultural aspect of transnational flexibility. I situate my discussion in the literature of transmigration studies and define flexible acculturation as having four important virtues: (1) it has diverse social players, rather than just political and economic elites; (2) it refers to interactions, not just differences; (3) it involves multiple processes; and (4) it is not just about agency but also about social regulations. These definitions help to explain why flexible acculturation is different from other concepts that have been proposed. I further argue that definitions of important social actors are contingent on a specific set of flexible acculturation processes. Social actors discussed in this paper include governments, the public, transmigrants, and women

    Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging

    Get PDF
    In order to achieve high-resolution deep-tissue imaging, multi-photon fluorescence microscopy and photoacoustic tomography had been proposed in the past two decades. However, combining the advantages of these two imaging systems to achieve optical-spatial resolution with an ultrasonic-penetration depth is still a field with challenges. In this paper, we investigate the detection of the two-photon photoacoustic ultrasound, and first demonstrate background-free two-photon photoacoustic imaging in a phantom sample. To generate the background-free two-photon photoacoustic signals, we used a high-repetition rate femtosecond laser to induce narrowband excitation. Combining a loss modulation technique, we successfully created a beating on the light intensity, which not only provides pure sinusoidal modulation, but also ensures the spectrum sensitivity and frequency selectivity. By using the lock-in detection, the power dependency experiment validates our methodology to frequency-select the source of the nonlinearity. This ensures our capability of measuring the background-free two-photon photoacoustic waves by detecting the 2nd order beating signal directly. Furthermore, by mixing the nanoparticles and fluorescence dyes as contrast agents, the two-photon photoacoustic signal was found to be enhanced and detected. In the end, we demonstrate subsurface two-photon photoacoustic bio-imaging based on the optical scanning mechanism inside phantom samples

    Three-dimensional endoscopic optical coherence tomography imaging of cervical inlet patch

    Get PDF
    A 30-year-old white man with established Barrett’s esophagus (BE) and continued symptoms of chronic severe heartburn, persistent cough, throat irritation, and asthma was referred for surveillance EGD at the VA Boston Healthcare System. During retraction of the endoscope, a pink circular lesion (A) was observed under white light endoscopy in the upper esophagus (spanning 20–22 cm from the incisors). Three-dimensional endoscopic optical coherence tomography (OCT) images were obtained of the region under direct visualization with white light by passing the probe through the standard accessory channel. An en face projection image (B) at 400-μm depth underneath the tissue surface showed columnar epithelium consistent with a cervical inlet patch (CIP) and surrounding normal squamous epithelium (SE). Cross-sectional OCT images along the probe pull-back direction (C) and the probe rotation direction (D and F) clearly demonstrated columnar and squamous epithelium in the CIP region and the surrounding esophagus, respectively. Biopsy specimens taken from the imaged lesion confirmed the finding of CIP. The OCT features matched representative hematoxylin and eosin histology (E and G). Both esophageal and extraesophageal symptoms responded to increased antacid therapy.United States. Veterans AdministrationNational Institutes of Health (U.S.) (Grant R01-CA75289-14)United States. Air Force Office of Scientific Research (Contract FA9550-10-1-0063)United States. Dept. of Defense. Medical Free Electron Laser Program (Contract FA9550-10-1-0551)MIT/Center for Integration of Medicine and Innovative Technology (Medical Engineering Fellowship)National Science Council of Taiwan (Taiwan Merit Scholarship

    Role of the Diphosphine Chelate in Emissive, Charge-Neutral Iridium(III) Complexes

    Get PDF
    A class of neutral tris-bidentate Ir(III) metal complexes incorporating a diphosphine as a chelate is prepared and characterized here for the first time. Treatment of [Ir(dppb)(tht)Cl3] (1) with fppzH afforded the dichloride complexes, trans-(Cl,Cl)[Ir(dppb)(fppz)Cl2] (2) and cis-(Cl,Cl)[Ir(dppb)(fppz)Cl2] (3). The reaction of 3 with the dianionic chelate precursor bipzH2 or mepzH2, in DMF gave the complex [Ir(dppb)(fppz)(bipz)] (4) or [Ir(dppb)(fppz)(mepz)] (5), respectively. In contrast, a hydride complex [Ir(dppb)(fppz)(bipzH)H] (6) was isolated instead of 4 in protic solvent, namely: DGME. All complexes 2 - 6 are luminescent in powder forms and thin films where the dichlorides (2, 3) emit with maxima at 590-627 nm (orange) and quantum yields (Q.Y.s) up to 90% whereas the tris-bidentate (4, 5) and hydride (6) complexes emit at 455-458 nm (blue) with Q.Y.s up to 70%. Hybrid TD-DFT calculations showed considerable MLCT contribution to the orange-emitting 2 and 3 but substantial ligand-centered 3ππ* transition character in the blue-emitting 4 - 6. The dppb does not participate to these radiative transitions in 4 - 6, but it provides the rigidity and steric bulk needed to promote the luminescence by suppressing the self-quenching in the solid state. Fabrication of an OLED with dopant 5 gave a deep blue CIE chromaticity of (0.16, 0.15). Superior blue emitters, which are vital in OLED applications, may be found in other neutral Ir(III) complexes containing phosphine chelates

    Trypsin-induced proteome alteration during cell subculture in mammalian cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is essential to subculture the cells once cultured cells reach confluence. For this, trypsin is frequently applied to dissociate adhesive cells from the substratum. However, due to the proteolytic activity of trypsin, cell surface proteins are often cleaved, which leads to dysregulation of the cell functions.</p> <p>Methods</p> <p>In this study, a triplicate 2D-DIGE strategy has been performed to monitor trypsin-induced proteome alterations. The differentially expressed spots were identified by MALDI-TOF MS and validated by immunoblotting.</p> <p>Results</p> <p>36 proteins are found to be differentially expressed in cells treated with trypsin, and proteins that are known to regulate cell metabolism, growth regulation, mitochondrial electron transportation and cell adhesion are down-regulated and proteins that regulate cell apoptosis are up-regulated after trypsin treatment. Further study shows that bcl-2 is down-regulated, p53 and p21 are both up-regulated after trypsinization.</p> <p>Conclusions</p> <p>In summary, this is the first report that uses the proteomic approach to thoroughly study trypsin-induced cell physiological changes and provides researchers in carrying out their experimental design.</p

    Correction of rotational distortion for catheter-based en face OCT and OCT angiography

    Get PDF
    We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm.National Institutes of Health (U.S.) (R01-EY011289-26)National Institutes of Health (U.S.) (R44-EY022864-01)National Institutes of Health (U.S.) (R01-CA075289-16)National Institutes of Health (U.S.) (R44-CA101067-05)National Institutes of Health (U.S.) (R01-CA178636-02)United States. Air Force Office of Scientific Research (Contract FA9550-10-1-0063)United States. Air Force Office of Scientific Research (Contract FA9550-12-1-0499

    Computer-Aided Analysis of Gland-Like Subsurface Hyposcattering Structures in Barrett’s Esophagus Using Optical Coherence Tomography

    Get PDF
    (1) Background: Barrett's esophagus (BE) is a complication of chronic gastroesophageal reflux disease and is a precursor to esophageal adenocarcinoma. The clinical implication of subsurface glandular structures of Barrett's esophagus is not well understood. Optical coherence tomography (OCT), also known as volumetric laser endomicroscopy (VLE), can assess subsurface glandular structures, which appear as subsurface hyposcattering structures (SHSs). The aim of this study is to develop a computer-aided algorithm and apply it to investigate the characteristics of SHSs in BE using clinical VLE data; (2) Methods: SHSs were identified with an initial detection followed by machine learning. Comprehensive SHS characteristics including the number, volume, depth, size and shape were quantified. Clinical VLE datasets collected from 35 patients with a history of dysplasia undergoing BE surveillance were analyzed to study the general SHS distribution and characteristics in BE. A subset of radiofrequency ablation (RFA) patient data were further analyzed to investigate the pre-RFA SHS characteristics and post-RFA treatment response; (3) Results: SHSs in the BE region were significantly shallower, more vertical, less eccentric, and more regular, as compared with squamous SHSs. SHSs in the BE region which became neosquamous epithelium after RFA were shallower than those in the regions that remained BE. Pre-ablation squamous SHSs with higher eccentricity correlated strongly with larger reduction of post-ablation BE length for less elderly patients; (4) Conclusions: The computer algorithm is potentially a valuable tool for studying the roles of SHSs in BE. Keywords: Barrett;s esophagus; glands; optical coherence tomographyNational Institutes of Health (U.S.) (Grant R01-CA075289-19)National Institutes of Health (U.S.) (Grant RO1-CA178636-04)National Institutes of Health (U.S.) (Grant R01-EY011289-30)United States. Air Force Office of Scientific Research (Contract FA9550-12-1-0551)United States. Air Force Office of Scientific Research (Contract FA9550-15-1-0473

    Integrated Optical Coherence Tomography and Optical Coherence Microscopy Imaging of Ex Vivo Human Renal Tissues

    Get PDF
    available in PMC 2012 June 04Materials and Methods A total of 35 renal specimens from 19 patients, consisting of 12 normal tissues and 23 tumors (16 clear cell renal cell carcinomas, 5 papillary renal cell carcinomas and 2 oncocytomas) were imaged ex vivo after surgical resection. Optical coherence tomography and optical coherence microscopy images were compared to corresponding hematoxylin and eosin histology to identify characteristic features of normal and pathological renal tissues. Three pathologists blinded to histology evaluated the sensitivity and specificity of optical coherence microscopy images to differentiate normal from neoplastic renal tissues. Results Optical coherence tomography and optical coherence microscopy images of normal kidney revealed architectural features, including glomeruli, convoluted tubules, collecting tubules and loops of Henle. Each method of imaging renal tumors clearly demonstrated morphological changes and decreased imaging depth. Optical coherence tomography and microscopy features matched well with the corresponding histology. Three observers achieved 88%, 100% and 100% sensitivity, and 100%, 88% and 100% specificity, respectively, when evaluating normal vs neoplastic specimens using optical coherence microscopy images with substantial interobserver agreement (κ = 0.82, p <0.01). Conclusions Integrated optical coherence tomography and optical coherence microscopy imaging provides coregistered, multiscale images of renal pathology in real time without exogenous contrast medium or histological processing. High sensitivity and specificity were achieved using optical coherence microscopy to differentiate normal from neoplastic renal tissues, suggesting possible applications for guiding renal mass biopsy or evaluating surgical margins.National Institutes of Health (U.S.) (NIH Grants R01-CA75289-14)National Institutes of Health (U.S.) (NIH R01-HL095717-02)United States. Air Force Office of Scientific Research (FA9550-10-1-0063)United States. Air Force Office of Scientific Research (FA9550-10-1-0551

    Comparison of Tissue Architectural Changes between Radiofrequency Ablation and Cryospray Ablation in Barrett’s Esophagus Using Endoscopic Three-Dimensional Optical Coherence Tomography

    Get PDF
    Two main nonsurgical endoscopic approaches for ablating dysplastic and early cancer lesions in the esophagus have gained popularity, namely, radiofrequency ablation (RFA) and cryospray ablation (CSA). We report a uniquely suited endoscopic and near-microscopic imaging modality, three-dimensional (3D) optical coherence tomography (OCT), to assess and compare the esophagus immediately after RFA and CSA. The maximum depths of architectural changes were measured and compared between the two treatment groups. RFA was observed to induce 230~260  m depth of architectural changes after each set of ablations over a particular region, while CSA was observed to induce edema-like spongiform changes to ~640 μm depth within the ablated field. The ability to obtain micron-scale depth-resolved images of tissue structural changes following different ablation therapies makes 3D-OCT an ideal tool to assess treatment efficacy. Such information could be potentially used to provide real-time feedback for treatment dosing and to identify regions that need further retreatment.National Institutes of Health (U.S.) (Grant R01-CA75289-15)National Institutes of Health (U.S.) (Grant K99-EB010071-01A1)National Institutes of Health (U.S.) (Grant R44-CA101067-06)United States. Air Force Office of Scientific Research (Contract FA9550-10-1-0063)Medical Free Electron Laser Program (Contract FA9550-10-1-0551

    Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos)

    Get PDF
    Background Radiofrequency ablation (RFA) is an endoscopic technique used to eradicate Barrett's esophagus (BE). However, such ablation can commonly lead to neosquamous epithelium overlying residual BE glands not visible by conventional endoscopy and may evade detection on random biopsy samples. Objective To demonstrate the capability of endoscopic 3-dimensional optical coherence tomography (3D-OCT) for the identification and characterization of buried glands before and after RFA therapy. Design Cross-sectional study. Setting Single teaching hospital. Patients Twenty-six male and 1 female white patients with BE undergoing RFA treatment. Interventions 3D-OCT was performed at the gastroesophageal junction in 18 patients before attaining complete eradication of intestinal metaplasia (pre–CE-IM group) and in 16 patients after CE-IM (post–CE-IM group). Main Outcome Measurements Prevalence, size, and location of buried glands relative to the squamocolumnar junction. Results 3D-OCT provided an approximately 30 to 60 times larger field of view compared with jumbo and standard biopsy and sufficient imaging depth for detecting buried glands. Based on 3D-OCT results, buried glands were found in 72% of patients (13/18) in the pre–CE-IM group and 63% of patients (10/16) in the post–CE-IM group. The number (mean [standard deviation]) of buried glands per patient in the post–CE-IM group (7.1 [9.3]) was significantly lower compared with the pre–CE-IM group (34.4 [44.6]; P = .02). The buried gland size (P = .69) and distribution (P = .54) were not significantly different before and after CE-IM. Limitations A single-center, cross-sectional study comparing patients at different time points in treatment. Lack of 1-to-1 coregistered histology for all OCT data sets obtained in vivo. Conclusion Buried glands were frequently detected with 3D-OCT near the gastroesophageal junction before and after radiofrequency ablation.National Institutes of Health (U.S.) (Grant R01-CA75289-15)National Institutes of Health (U.S.) (Grant R44CA101067-06)National Institutes of Health (U.S.) (Grant R01-HL095717-03)National Institutes of Health (U.S.) (Grant R01-NS057476-05)National Institutes of Health (U.S.) (Grant K99-EB010071-01A1)United States. Air Force Office of Scientific Research (Contract FA9550-10-1-0063)United States. Air Force Office of Scientific Research. Medical Free Electron Laser Program (Contract FA9550-10-1-0551)Center for Integration of Medicine and Innovative Technolog
    corecore