26 research outputs found
Testing the ΛCDM cosmological model with forthcoming measurements of the cosmic microwave background with SPT-3G
We forecast constraints on cosmological parameters enabled by three surveys conducted with SPT-3G, the third-generation camera on the South Pole Telescope. The surveys cover separate regions of 1500, 2650, and 6000 deg2 to different depths, in total observing 25% of the sky. These regions will be measured to white noise levels of roughly 2.5, 9, and 12μK -armin, respectively, in cosmic microwave background (CMB) temperature units at 150 GHz by the end of 2024. The survey also includes measurements at 95 and 220 GHz, which have noise levels a factor of ∼1.2 and 3.5 times higher than 150 GHz, respectively, with each band having a polarization noise level ∼2 times higher than the temperature noise. We use a novel approach to obtain the covariance matrices for jointly and optimally estimated gravitational lensing potential band powers and unlensed CMB temperature and polarization band powers. We demonstrate the ability to test the ΛCDM model via the consistency of cosmological parameters constrained independently from SPT-3G and Planck data, and consider the improvement in constraints on ΛCDM extension parameters from a joint analysis of SPT-3G and Planck data. The ΛCDM cosmological parameters are typically constrained with uncertainties up to ∼2 times smaller with SPT-3G data, compared to Planck, with the two data sets measuring significantly different angular scales and polarization levels, providing additional tests of the standard cosmological model
Medical applications of model based dynamic thermography
The proposal to use active thermography in medical diagnostics is promising in some applications concerning investigation of directly accessible parts of the human body. The combination of dynamic thermograms with thermal models of investigated structures gives attractive possibility to make internal structure reconstruction basing on different thermal properties of biological tissues. Measurements of temperature distribution synchronized with external light excitation allow registration of dynamic changes of local temperature dependent on heat exchange conditions. Preliminary results of active thermography applications in medicine are discussed. For skin and under- skin tissues an equivalent thermal model may be determined. For the assumed model its effective parameters may be reconstructed basing on the results of transient thermal processes. For known thermal diffusivity and conductivity of specific tissues the local thickness of a two or three layer structure may be calculated. Results of some medical cases as well as reference data of in vivo study on animals are presented. The method was also applied to evaluate the state of the human heart during the open chest cardio-surgical interventions. Reference studies of evoked heart infarct in pigs are referred, too. We see the proposed new in medical applications technique as a promising diagnostic tool. It is a fully non-invasive, clean, handy, fast and affordable method giving not only qualitative view of investigated surfaces but also an objective quantitative measurement result, accurate enough for many applications including fast screening of affected tissues
Congenital hyperinsulinism: 2 case reports with different rare variants in ABCC8.
Congenital hyperinsulinism (CHI) is a rare glucose metabolism disorder characterized by unregulated secretion of insulin that leads to hyperinsulinemic hypoglycemia (HH). Most cases are caused by mutations in the KATP-channel genes ABCC8 and KCNJ11. We report 2 patients that experienced severe HH from the first day of life. Patient 1 developed midgut volvulus after initiating diazoxide and required intestinal resection. He was subsequently managed with a high-dose octreotide and glucose-enriched diet. Consistent with diffuse type CHI by 18F-dihydroxyphenylalanine positron emission tomography-computed tomography, genetic testing revealed a homozygous ABCC8 variant, c.1801G>A, p.(Val601Ile). The rare variant was previously reported to be diazoxide-responsive, and the patient responded well to diazoxide monotherapy, with clinical remission at 2 years of age. Patient 2 responded to diazoxide with spontaneous clinical remission at 15 months of age. However, an oral glucose tolerance test at 7 years of age revealed hyperinsulinism. Genetic testing revealed that the proband and several seemingly healthy family members harbored a novel, heterozygous ABCC8 variant, c.1780T>C, p.(Ser594Pro). Genetic findings identified previously unrecognized HH in the proband's mother. The proband's uncle had been diagnosed with monogenic ABCC8-diabetes and was successfully transitioned from insulin to glibenclamide therapy. We report findings of intestinal malrotation and volvulus occurring 2 days after initiation of diazoxide treatment. We also report a novel, heterozygous ABCC8 variant in a family that exhibited cases of CHI in infancy and HH and monogenic diabetes in adult members. The cases demonstrate the importance and clinical utility of genetic analyses for informing and guiding treatment and care
Recommended from our members
SPT-3G+: Mapping the high-frequency cosmic microwave background using kinetic inductance detectors
We present the design and science goals of SPT-3G+, a new camera for the South Pole Telescope, which will consist of a dense array of 34100 kinetic inductance detectors measuring the cosmic microwave background (CMB) at 220, 285 and 345 GHz. The SPT-3G+ dataset will enable new constraints on the process of reionization, including measurements of the patchy kinematic Sunyaev-Zeldovich effect and improved constraints on the optical depth due to reionization. At the same time, it will serve as a pathfinder for the detection of Rayleigh scattering, which could allow future CMB surveys to constrain cosmological parameters better than from the primary CMB alone. In addition, the combined, multi-band SPT-3G and SPT-3G+ survey data, will have several synergies that enhance the original SPT-3G survey, including: extending the redshift-reach of SZ cluster surveys to z > 2; understanding the relationship between magnetic fields and star formation in our Galaxy; improved characterization of the impact of dust on inflationary B-mode searches; and characterizing astrophysical transients at the boundary between mm and sub-mm wavelengths. Finally, the modular design of the SPT-3G+ camera allows it to serve as an on-sky demonstrator for new detector technologies employing microwave readout, such as the on-chip spectrometers that we expect to deploy during the SPT-3G+ survey. In this paper, we describe the science goals of the project and the key technology developments that enable its powerful yet compact design. © 2022 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
SPT-3G+: mapping the high-frequency cosmic microwave background using kinetic inductance detectors
We present the design and science goals of SPT-3G+, a new camera for the South Pole Telescope, which will consist of a dense array of 34100 kinetic inductance detectors measuring the cosmic microwave background (CMB) at 220, 285 and 345 GHz. The SPT-3G+ dataset will enable new constraints on the process of reionization, including measurements of the patchy kinematic Sunyaev-Zeldovich effect and improved constraints on the optical depth due to reionization. At the same time, it will serve as a pathfinder for the detection of Rayleigh scattering, which could allow future CMB surveys to constrain cosmological parameters better than from the primary CMB alone. In addition, the combined, multi-band SPT-3G and SPT-3G+ survey data, will have several synergies that enhance the original SPT-3G survey, including: extending the redshift-reach of SZ cluster surveys to z > 2; understanding the relationship between magnetic fields and star formation in our Galaxy; improved characterization of the impact of dust on inflationary B-mode searches; and characterizing astrophysical transients at the boundary between mm and sub-mm wavelengths. Finally, the modular design of the SPT-3G+ camera allows it to serve as an on-sky demonstrator for new detector technologies employing microwave readout, such as the on-chip spectrometers that we expect to deploy during the SPT-3G+ survey. In this paper, we describe the science goals of the project and the key technology developments that enable its powerful yet compact design