16 research outputs found

    Global Advancements and Current Challenges of Electric Vehicle Batteries and Their Prospects: A Comprehensive Review

    No full text
    Battery electric vehicles (BEVs) have started to play a significant role in the transport sector and automotive industries. The broader market penetration of BEVs has still not been achieved due to significant barriers associated with initial costs and short driving ranges. The purchase price and a limited driving range are barriers that are inevitably associated with battery technology. Therefore, the growing demand for BEVs has expedited new innovative approaches to improve battery capacity and performance and to reduce battery costs. Considerable advancements have been employed to meet the challenges. However, there are still many challenges to make BEVs affordable and convenient for users. In this review, the main aims are to identify and address challenges by considering the prospects of BEVs in the future market and to explore the technological and financial difficulties of low energy density of battery materials, fast charging rate, battery lifetime, and cost-effectiveness, associated with effectively implementing and adopting BEVs. Moreover, potential suggestions are proposed for researchers, manufacturers, users, and government policy planners. Finally, a concrete conclusion is drawn by disseminating a vision about the future adoption of BEVs. This review of technologies, challenges, prospects, and potential solutions associated with BEVs could provide a base for effective strategic policy and could help policymakers to frame strategies for adapting and achieving targets. This review could help to achieve sustainable BEV transport and to adopt next-generation green vehicles

    Electronic waste management scenario in Bangladesh: policies, recommendations, and case study at Dhaka and Chittagong for a sustainable solution

    No full text
    Bangladesh produces 3 million metric ton (MMT) of e-waste, including ship-breaking yards, each year. The leachate from dumped e-waste contains toxic heavy metals and organics that are detrimental to animals, humans, and the environment. The proper legislation and systematic e-waste management strategies have not yet been established in Bangladesh. This study reported the upgradation of the e-waste policies, e.g., the Factory Act, 1965 to Hazardous Waste (e-waste) Management, 2021 of the government of Bangladesh (GoB). A field survey was conducted for an in-depth understanding of the current scenario of e-waste management in Dhaka and Chittagong and total e-waste streamflow has been presented. The usage trend of electronic products (cell phones, refrigerators, television, computers, and air conditioners), the average lifetime of these products, and knowledge of e-waste were explored by the face-to-face questionnaire-based interviews. Cell phones were found to be the significant contributors to e-waste in Bangladesh. The study suggests that systematic e-waste management policies can improve the total scenario. An integrated e-waste recycling facility based on life cycle analysis (LCA) and materials flow analysis (MFA) must be introduced. The recycling process has been discussed, and recommendation has been pointed out for Bangladesh. Based on the study, printed circuit boards (PCBs)-based metal recovery business model from mobiles and computers worth $1 billion/yr by 2030 has been proposed. State-of-the-art technologies in recycling plants and disposal site selection criteria are essential factors for the safer management of e-waste in Bangladesh. Environmental awareness has to be developed for a sustainable and long-term e-waste management system

    Synthesis, Characterization and Sorption Properties of Biochar, Chitosan and ZnO-Based Binary Composites towards a Cationic Dye

    No full text
    Industrial effluents contaminated with different types of organic dyes have become a major concern to environmentalists due to the carcinogenic nature of the dyes, which are harmful to human and aquatic life. In recent years, the treatment of contaminated effluents by natural resources has been proposed as the most sustainable solution for this problem. In this work, Moringa oleifera (M. oleifera) seed-derived biochar composites, e.g., Biochar-Chitosan (BC), Biochar-ZnO (BZ), and Chitosan-ZnO (CZ) were produced and characterized. The synthesized materials were then utilized to adsorb a cationic dye, methylene blue. Spectroscopic analysis of the biochar-based composites revealed that the modification of biochar by chitosan and ZnO introduced different functional and active groups in the biochar surface. Pore development in the structure of biochar nanocomposites was visible in surface morphological images. The derived biochar was fully amorphous and increased crystallinity by the ZnO modification. The obtained surface area varied from 0.90 ± 0.00 to 14.48 ± 1.13 m2 g−1 for prepared sorbents, where BZ corresponds to the highest and BC corresponds to the lowest surface area, respectively. The basic pH (9) was the most favorable condition for sorption. The sorption reached equilibrium at 90 min. Isotherm revealed the favorability of the Langmuir model over the Freundlich and Temkin models. The highest sorption capacity (~170 mg/g) was found for BC. The BC and BZ showed a 75% increase and 16% decrease in removal due to the chitosan and ZnO modification, respectively. Response surface methodology (RSM) optimization for BC showed similar results to the analytical experiments. The characterization and experimental results prefigure the chemical functionalities as the critical parameter over the surface area for the adsorption process

    pH-responsive release of ciprofloxacin hydrochloride from micro-, nano-, and functionalized nanocellulose

    No full text
    This research evaluated pH-responsive release characteristics for the drug (ciprofloxacin hydrochloride) from micro-, nano-, and functionalized cellulose forms. Nanocrystalline cellulose (NCC) was prepared from microcrystalline cellulose (MCC) by sulfuric acid hydrolysis. The aldehyde (–CHO) groups were introduced at the carbon-2 (C-2) and carbon-3 (C-3) positions of glucose moiety of the cellulose network by selective oxidation to form di-aldehyde nanocellulose (DANC). The conversion was validated by chemical, spectroscopic, morphological, and crystallographic analysis. Drug binding capacity (mg/g) of DANC was higher (200.8 mg/g) compared to NCC (138.3 mg/g) and MCC (120.2 mg/g), respectively. The increase in pH from 2.5 to 8.5 enhanced drug release for all the excipients. At pH 2.5, slow release of the drugs was observed. In 6 h, DANC released 44.7 % of the loaded drug at pH 2.5. However, drug release reached equilibrium (84.8 % of loaded drug) within 10 min at pH 8.5. The release kinetics at acidic pH were validated using zero-order, first-order, Higuchi, and Korsmeyer-Peppas kinetics models. Higuchi and Korsmeyer–Peppas' kinetic models interpreted drug release phenomena with a good fit. This implies that diffusion, dissolution, swelling, and slight erosion contribute to drug release. The results suggest that selective functionalization can be applied to cellulose for its potential applications in pH-responsive drug delivery, and therefore, the functionalized cellulose deserves immediate attention

    Global Advancements and Current Challenges of Electric Vehicle Batteries and Their Prospects: A Comprehensive Review

    No full text
    Battery electric vehicles (BEVs) have started to play a significant role in the transport sector and automotive industries. The broader market penetration of BEVs has still not been achieved due to significant barriers associated with initial costs and short driving ranges. The purchase price and a limited driving range are barriers that are inevitably associated with battery technology. Therefore, the growing demand for BEVs has expedited new innovative approaches to improve battery capacity and performance and to reduce battery costs. Considerable advancements have been employed to meet the challenges. However, there are still many challenges to make BEVs affordable and convenient for users. In this review, the main aims are to identify and address challenges by considering the prospects of BEVs in the future market and to explore the technological and financial difficulties of low energy density of battery materials, fast charging rate, battery lifetime, and cost-effectiveness, associated with effectively implementing and adopting BEVs. Moreover, potential suggestions are proposed for researchers, manufacturers, users, and government policy planners. Finally, a concrete conclusion is drawn by disseminating a vision about the future adoption of BEVs. This review of technologies, challenges, prospects, and potential solutions associated with BEVs could provide a base for effective strategic policy and could help policymakers to frame strategies for adapting and achieving targets. This review could help to achieve sustainable BEV transport and to adopt next-generation green vehicles

    Synthesis, Characterization and Performance Evaluation of Burmese Grape (Baccaurea ramiflora) Seed Biochar for Sustainable Wastewater Treatment

    No full text
    Biochar prepared from different bio-sources serves as a feasible solution for the decontamination of dye-contaminated wastewater. In this study, biochar was synthesized from a sustainable source, i.e., local fruit waste, Burmese grape seeds (BGSs). The seeds were collected from a local market, washed, pre-teated and finally converted into biochar by pyrolysis in a N2 furnace. The removal efficiency of the synthesized biochar was evaluated towards a cationic industrial azo dye, methylene blue (MB). The phosphoric acid (H3PO4) and potassium hydroxide (KOH) pretreated BGS were pyrolized at 500 °C for 3 h in a N2 furnace at a heating rate of 10 °C/min. The spectroscopic analysis confirmed the presence of multiple surface functional groups, e.g., R-OH, OH, -C=O, -COOH, etc. The surface of the biochar was randomized with porous tunnel-like structures. The specific surface area and pore volume obtained from BET analysis were 19.90 ± 1.20 m2/g and 5.85 cm3/g. The MB concentration (mg/L), contact duration (min) and pH were varied to assess the MB sorption phenomena. The optimum pH was found to be 8. During the first 20 min of contact time, adsorption was rapid and equilibrium was reached after 75 min. The adsorption was best described by pseudo-first-order kinetics with a good fit (R2 = 0.99). The maximum removal percentage was ~85%, and per gram of BGS can adsorb 166.30 mg of MB, which supports the Langmuir adsorption isotherm model. The obtained results were compared with the reported literature, and BGS showed its excellent candidacy to be industrially utilized in the tertiary stage of wastewater treatment plants

    Aquatic Microplastic Pollution Control Strategies: Sustainable Degradation Techniques, Resource Recovery, and Recommendations for Bangladesh

    No full text
    Microplastics’ dangers and the absence of effective regulation technologies have risen to prominence as a worldwide issue in recent years. South Asian countries, such as Bangladesh, are among the most threatened nations to face the drastic consequence of releasing microplastics into the aquatic environment. The research on managing and degrading microplastics is ongoing, however, sustainable techniques have not yet been found. To create a green and efficient microplastic management plan, we have compiled all the information on the existing removal and degradation techniques for microplastics and provided an overview of all the noteworthy methods that can be implemented in Bangladesh. In the portrayed biotic and abiotic techniques, coagulation and photocatalysis were found to be most efficient in removing microplastics (as high as 99%) in different studies. The concept of microplastic is new to the researchers of Bangladesh, therefore, the characteristics, occurrence, fate, and threats are briefly discussed in this paper. Sampling, extraction, and identification methods of microplastic in freshwater and sediment samples are also thoroughly specified. The sources of microplastic pollution in Bangladesh and possible strategies that can be implemented to minimize additional microplastic discharge into aquatic environments are discussed. Although Bangladesh was the very first country to ban polythene, the failure of the implementation of rules and regulations and a lack of management strategy made Bangladesh the 10th worst country in managing plastic waste. This work is a wake-up call for other researchers to conduct an in-depth investigation to improve microplastic degrading technologies and develop a sustainable strategy to end microplastic pollution in Bangladesh

    A Comprehensive Review on the Sustainable Treatment of Textile Wastewater: Zero Liquid Discharge and Resource Recovery Perspectives

    No full text
    Clothing, one of the basic needs, demands the growth of textile industries worldwide, resulting in higher consumption and pollution of water. Consequently, it requires extensive treatment of textile effluent for environmental protection as well as reuse purposes. Primary treatment, secondary treatment, and tertiary treatment are the three major phases of textile wastewater treatment. Secondary treatment under aerobic and anaerobic circumstances is carried out to decrease BOD, COD, phenol, residual oil, and color, whereas primary treatment is utilized to remove suspended particles, oil, grease, and gritty materials. However, biological treatment is not fully capable of treating water according to discharge/reuse standards. Hence, tertiary treatment is used to remove final contaminants from the wastewater. Adsorption is regarded as one of the most feasible processes for dye and metal removal in consideration of cost and variation in the adsorbent. Though membrane filtration is an efficient process, the cost of operation limits its application. It’s unfortunate that there isn’t a universally applicable treatment solution for textile effluents. Therefore, the only flexible strategy is to combine several therapy modalities. Treatment of complicated, high-strength textile wastewater depending on pollutant load will be more successful if physical, chemical, and biological approaches are used in tandem. Enforcement of stringent environmental regulation policies, increasing costs and demand for freshwater, and the rising costs and difficulties associated with wastewater disposal are accelerating efforts toward achieving ZLD. Additionally, research into methods for extracting useful materials from wastewater has blossomed in recent years. As such, the purpose of this analysis is to give a holistic overview of textile wastewater treatment systems, with a focus on zero liquid discharge (ZLD) and efficient resource recovery, both of which may hasten the transition to more sustainable water management

    A Comprehensive Review on the Sustainable Treatment of Textile Wastewater: Zero Liquid Discharge and Resource Recovery Perspectives

    No full text
    Clothing, one of the basic needs, demands the growth of textile industries worldwide, resulting in higher consumption and pollution of water. Consequently, it requires extensive treatment of textile effluent for environmental protection as well as reuse purposes. Primary treatment, secondary treatment, and tertiary treatment are the three major phases of textile wastewater treatment. Secondary treatment under aerobic and anaerobic circumstances is carried out to decrease BOD, COD, phenol, residual oil, and color, whereas primary treatment is utilized to remove suspended particles, oil, grease, and gritty materials. However, biological treatment is not fully capable of treating water according to discharge/reuse standards. Hence, tertiary treatment is used to remove final contaminants from the wastewater. Adsorption is regarded as one of the most feasible processes for dye and metal removal in consideration of cost and variation in the adsorbent. Though membrane filtration is an efficient process, the cost of operation limits its application. It’s unfortunate that there isn’t a universally applicable treatment solution for textile effluents. Therefore, the only flexible strategy is to combine several therapy modalities. Treatment of complicated, high-strength textile wastewater depending on pollutant load will be more successful if physical, chemical, and biological approaches are used in tandem. Enforcement of stringent environmental regulation policies, increasing costs and demand for freshwater, and the rising costs and difficulties associated with wastewater disposal are accelerating efforts toward achieving ZLD. Additionally, research into methods for extracting useful materials from wastewater has blossomed in recent years. As such, the purpose of this analysis is to give a holistic overview of textile wastewater treatment systems, with a focus on zero liquid discharge (ZLD) and efficient resource recovery, both of which may hasten the transition to more sustainable water management
    corecore