31 research outputs found

    Exploration of the Aventurine Effect Mechanism in Chromium Aventurine Glass

    Get PDF
    Similar to the details of the discovery of aventurine glass, the mechanism that allow aventurine glass formation are not well understood. Mechanisms ranging from supersaturation with transition metal ions to the physical addition of iron or brass filings have been suggested. Because the amount of technical knowledge is extremely limited, the goal of this research is to better understand the melt conditions and formation mechanisms that produce aventurine glasses. A composition, based on an artesian aventurine glass, was modified so that the effect of each batch material could be understood with regard to the aventurine effect. The specimens were analyzed using XRD, ASEM, OTA, and optical microscopy for comparison. The base glass was then modified as to vary the transition metal, transition metal ion concentration, and glass basicity. The specimens were analyzed similarly so that a better understanding of the conditions and mechanisms that lead to the formation of aventurine glass could be understood

    Renin–Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome

    Get PDF
    Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin–angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1–9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin–angiotensin system and reducing the pathogen’s cell entry could be a promising therapeutic strategy in the struggle against COVID-19

    Angiotensin A/Alamandine/MrgD Axis: Another Clue to Understanding Cardiovascular Pathophysiology

    No full text
    The renin-angiotensin system (RAS) plays a crucial role in cardiovascular regulations and its modulation is a challenging target for the vast majority of cardioprotective strategies. However, many biological effects of these drugs cannot be explained by the known mode of action. Our comprehension of the RAS is thus far from complete. The RAS represents an ingenious system of “checks and balances”. It incorporates vasoconstrictive, pro-proliferative, and pro-inflammatory compounds on one hand and molecules with opposing action on the other hand. The list of these molecules is still not definitive because new biological properties can be achieved by minor alteration of the molecular structure. The angiotensin A/alamandine-MrgD cascade associates the deleterious and protective branches of the RAS. Its identification provided a novel clue to the understanding of the RAS. Angiotensin A (Ang A) is positioned at the “crossroad” in this system since it either elicits direct vasoconstrictive and pro-proliferative actions or it is further metabolized to alamandine, triggering opposing effects. Alamandine, the central molecule of this cascade, can be generated both from the “deleterious” Ang A as well as from the “protective” angiotensin 1–7. This pathway modulates peripheral and central blood pressure regulation and cardiovascular remodeling. Further research will elucidate its interactions in cardiovascular pathophysiology and its possible therapeutic implications
    corecore