24 research outputs found

    Investigation of sandwich material surface created by abrasive water jet (AWJ) via vibration emission

    Get PDF
    The paper presents research a of abrasive waterjet cutting of heterogeneous “sandwich“ material with different Young modulus of elasticity of the cutted surface geometry by means of vibration emission. In order to confirm hypothetical assumptions about direct relation between vibration emission and surface quality an experiment in heterogeneous material consisting of stainless steel (DIN 1.4006 / AISI 410) and alloy AlCuMg2 has been provided

    Investigation of sandwich material surface created by abrasive water jet (AWJ) via vibration emission

    Get PDF
    The paper presents research a of abrasive waterjet cutting of heterogeneous “sandwich“ material with different Young modulus of elasticity of the cutted surface geometry by means of vibration emission. In order to confirm hypothetical assumptions about direct relation between vibration emission and surface quality an experiment in heterogeneous material consisting of stainless steel (DIN 1.4006 / AISI 410) and alloy AlCuMg2 has been provided

    Long-range corrected DFT calculations of charge-transfer integrals in model metal-free phthalocyanine complexes

    Get PDF
    An assessment of several widely used exchange--correlation potentials in computing charge-transfer integrals is performed. In particular, we employ the recently proposed Coulomb-attenuated model which was proven by other authors to improve upon conventional functionals in the case of charge-transfer excitations. For further validation, two distinct approaches to compute the property in question are compared for a phthalocyanine dimer

    Determination of technologically optimal factors of modulated waterjet

    No full text
    This paper deals with two methods of determination of technologically optimal factors of a hydrodynamic resonance system leading to the acquiring of maximal fundamental frequency, amplitude, pressure, and energy of oscillations of a liquid jet. These factors are determined by the differential method and the method of state space search into depth. Furthermore, theoretically predicted results are presented, interpreted, and compared with results of laboratory measurements. The benefit of the study is the optimization itself, either for the optimal input factors of the prototype or a maximum possible modification of existing equipment in order to achieve the highest possible material disintegration efficiency.Web of Science601-417917
    corecore