24 research outputs found

    Growth and Characterization of Tandem-Junction Photovoltaic Nanowires

    Get PDF
    In order to satisfy the growing energy needs of our planet’s population, and at the same time mitigate global warming, sustainable energy sources such as solar energy are indispensable. In addition to conventional silicon-based solar cells, nanotechnology offers interesting approaches for complementary applications. Multi-junction solar cells based on III–V semiconductors hold today’s world-record efficiencies—twice as efficient as solar cells found on rooftops nowadays—but their high cost is limiting their terrestrial use.In this thesis, nanowires for photovoltaic applications are studied. Nanowire solar cells have the potential to reach the same efficiencies as the world-record III–V solar cells while only using a fraction of the material. First, InP single-junction nanowires were investigated. For solar energy harvesting, large-area nanowire solar cells have to be processed but so far only devices with less than one mm2 have been fabricated. To lay the foundation of large-area nanowire solar cells, the wafer-scale synthesis of InP nanowire arrays was systematically studied. Then the effect of embedding InP nanowires in different oxides was investigated. Due to their inherent large surface-to-volume ratio, nanowires require surface passivation. However, fixed charge carriers in the passivating layer can alter the electrostatic potential of nanowires, which was directly imaged by measuring the electron-beam-induced current. Furthermore, the current-voltage characteristics of single nanowires under in situ illumination was measured and correlated with electron-beam-induced current measurements, by using a setup that combines a nanoprobe system with an optical fiber coupled to a multi-LED setup inside a scanning electron microscope. Guided by the multi-LED and electron-beam-induced current setup, tandem-junction nanowires were developed. After identifying and subsequently preventing the occurrence of a parasitic junction when combining an InP n–i–p junction with a tunnel diode, GaInP/InP tandem-junction nanowires were synthesized. An optical and electrical bias was applied to individually measure the electron-beam-induced current of both sub-cells. Finally, axially defined, GaInP/InP/InAsP triple-junction photovoltaic nanowires optimized for light absorption exhibiting an open-circuit voltage of up to 2.37 V were synthesized. The open-circuit voltage amounts to 94 % of the sum of the respective single-junction nanowires. These results pave the way for realizing the next-generation of scalable, high-performance, and ultra-high power-to-weight ratio multi-junction, nanowire-based solar cells

    Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

    Get PDF
    In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H2FeRu3(CO)13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo3(CO)12, metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H2FeRu3(CO)13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8–9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO)4 from H2FeRu3(CO)13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H2FeRu3(CO)13 as compared to the structurally similar HFeCo3(CO)12.The authors acknowledge the fruitful and productive environment provided by the COST Action CELINA CM1301 and we would like to take the opportunity to extend our thanks to Prof. Petra Swiderek for running this Action exceptionally well. Marc Hanefeld and Michael Huth acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through Priority Program SPP 1928, project HU 752/12-1. DHF thanks the National Science Foundation for support of this work through the linked collaborative grants CHE-1607621 and CHE-1607547. OI acknowledges supported from the Icelandic Center of Research (RANNIS) Grant No. 13049305(1-3) and the University of Iceland Research Fund. RKTP acknowledges a doctoral grant from the University of Iceland Research Fund and financial support from the COST Action CM1301; CELINA, for short term scientific missions (STSMs).Peer Reviewe

    Light current-voltage measurements of single, as-grown, nanowire solar cells standing vertically on a substrate

    No full text
    Nanowire based solar cells hold promise for terrestrial and space photovoltaic applications. However, to speed-up and further continue with nanowire solar cell development, quick and reliable characterization tools capable of evaluating single nanowire performance of nanowires still standing on the substrate are necessary. Here, we present the use of a light emitting diode (LED) based setup, which combined with a nanoprobe system inside a scanning electron microscope, enables on-wafer, single, nanowire solar cell optoelectronic characterization. In particular, we study the I–V characteristics of single nanowire solar cells under in situ illumination and correlate the results with those of electron beam induced current measurements. Further, the LED setup enables the study of nanowire solar cell under varied incident power. We believe that this approach will enable rapid development of single and tandem nanowire based solar cells as well as other nanowire based optoelectronic devices

    Development and characterization of photovoltaic tandem-junction nanowires using electron-beam-induced current measurements

    No full text
    Nanowires have many interesting properties that are of advantage for solar cells, such as the epitaxial combination of lattice-mismatched materials without plastic deformation. This could be utilized for the synthesis of axial tandem-junction nanowire solar cells with high efficiency at low material cost. Electron-beam-induced current measurements have been used to optimize the performance of single-junction nanowire solar cells. Here, we use electron-beam-induced current measurements to break the barrier to photovoltaic tandem-junction nanowires. In particular, we identify and subsequently prevent the occurrence of a parasitic junction when combining an InP n—i—p junction with a tunnel diode. Furthermore, we demonstrate how to use optical and electrical biases to individually measure the electron-beam-induced current of both sub-cells of photovoltaic tandem-junction nanowires. We show that with an applied voltage in forward direction, all junctions can be analyzed simultaneously. The development of this characterization technique enables further optimization of tandem-junction nanowire solar cells

    Wafer-Scale Synthesis and Optical Characterization of InP Nanowire Arrays for Solar Cells

    No full text
    Funding Information: This work was financially supported by NanoLund, Myfab, the Swedish Research Council, the Swedish Energy Agency, and the Knut and Alice Wallenberg Foundation. Publisher Copyright: © 2021 The Authors. Published by American Chemical Society.Nanowire solar cells have the potential to reach the same efficiencies as the world-record III-V solar cells while using a fraction of the material. For solar energy harvesting, large-area nanowire solar cells have to be processed. In this work, we demonstrate the synthesis of epitaxial InP nanowire arrays on a 2 inch wafer. We define five array areas with different nanowire diameters on the same wafer. We use a photoluminescence mapper to characterize the sample optically and compare it to a homogeneously exposed reference wafer. Both steady-state and time-resolved photoluminescence maps are used to study the material's quality. From a mapping of reflectance spectra, we simultaneously extract the diameter and length of the nanowires over the full wafer. The extracted knowledge of large-scale nanowire synthesis will be crucial for the upscaling of nanowire-based solar cells, and the demonstrated wafer-scale characterization methods will be central for quality control during manufacturing.Peer reviewe

    Processing and characterization of large area InP nanowire photovoltaic devices

    No full text
    III−V nanowire (NW) photovoltaic devices promise high efficiencies at reduced materials usage. However, research has so far focused on small devices, mostly ≤1 mm2. In this study, the upscaling potential of axial junction InP NW photovoltaic devices is investigated. Device processing was carried out on a full 2″ wafer, with device sizes up to 1 cm2, which is a significant increase from the mm-scale III−V NW photovoltaic devices published previously. The short-circuit current density of the largest 1 cm2 devices, in which 460 million NWs are contacted in parallel, is on par with smaller devices. This enables a record power generation of 6.0 mW under AM1.5 G illumination, more than one order of magnitude higher than previous III−V NW photovoltaic devices. On the other hand, the fill factor of the larger devices is lower in comparison with smaller devices, which affects the device efficiency. By use of electroluminescence mapping, resistive losses in the indium tin oxide (ITO) front contact are found to limit the fill factor of the large devices. We use combined light-beam induced current (LBIC) and photoluminescence (PL) mapping as a powerful characterization tool for NW photovoltaic devices. From the LBIC and PL maps, local defects can be identified on the fully processed devices

    Realization of axially defined GaInP/InP/InAsP triple-junction photovoltaic nanowires for high-performance solar cells

    No full text
    III-V semiconductor-based planar multi-junction solar cells synthesized to match the solar spectrum, increase absorption, and reduce thermalization loss are today's world-record efficiency solar cells. Realizing similarly performing multi-junction III-V nanowire (NW) solar cells would require significantly less material and is more sustainable at lower cost than planar solar cells. The NW geometry allows expanding the range of compatible material combinations along the NW axis far beyond current multi-junction solar cells and enables promising applications in, for example, space power technology and smart windows. However, multi-junction NW photovoltaics have been hampered by the inability to electrically connect different materials in an axial geometry. We report the design and proof-of-principle demonstration of axially defined GaInP/InP/InAsP triple-junction photovoltaic NWs optimized for light absorption exhibiting an open-circuit voltage of up to 2.37 V. The open-circuit voltage is twice as large as previously reported for tandem-junction photovoltaic NWs and amounts to 94% of the sum of the respective single-junction NWs. Our findings pave the way for realizing the next generation of scalable, high-performance, and ultra-high power-to-weight ratio multi-junction, NW-based solar cells

    Self-Limiting Polymer Exposure for Vertical Processing of Semiconductor Nanowire-Based Flexible Electronics

    No full text
    In this work, we demonstrate a vertical processing method to fabricate nanowire (NW)-based devices. This method combines the strong light absorption ability caused by the NW geometry and exposure to dose-dependent clearance properties of a photo-sensitive polymer. By embedding NW arrays in a polymer, the NW light absorption leads to self-limited exposure and selective removal of the polymer. This optical and self-limited exposure pattern definition method can replace more expensive processing equipment, such as reactive ion etching and the use of a mask aligner. Excitingly, this method can be used to enable peel-off of NW arrays from their parent substrate, opening up opportunities to fabricate flexible NW array devices

    Unravelling processing issues of nanowire-based solar cell arrays by use of electron beam induced current measurements

    No full text
    III-V vertical nanowire arrays have great potential for next generation photovoltaics. Development towards high performing nanowire solar cells, which consist of a parallel connection of millions of single nanowire solar cells, requires a fast characterization technique that establishes a link between device performance and device processing. In this work, we use electron beam induced current measurements to characterize fully processed InP nanowire array solar cells at the nanoscale. Non-functional areas on fully processed devices can be quickly identified and processing induced effects on device performance can be clearly distinguished from those arising from nanowire growth. We identify how limiting factors on device performance are related to the processing procedures and provide a path to improve device performance further. In this way, electron beam induced current measurements become an essential tool for nanowire solar cell efficiency optimization, providing fast and useful information at the nanoscale and thus enabling up-scaling of the technology

    UV exposure : A novel processing method to fabricate nanowire solar cells

    No full text
    We demonstrate a novel and rapid method for nanowire (NW) solar cell processing. NW arrays were embedded in photoresist. The strong absorption of light in the NWs leads to self-limited exposure of the resist, which enables selective removal of the exposed part of the resist, opening up for the tips of the NWs and further processing. The UV-exposure technology allows a fast and low-cost process compared to the conventional reactive ion etching method
    corecore